v netCDF User’s Guide

NCACPY: FORTRAN Interface 106

8.5 Get Name of Attribute from Its Number............ 108
ncattname: C Interface. 108

NCANAM: FORTRAN Interface 109

8.6 Rename an Attribute 110
ncattrename: C Interface..... 110

NCAREN: FORTRAN Interface.......................... 111

8.7 Delete an Attribute ... 112
ncattdel: C Interface 112

NCADEL: FORTRAN Interface 113

9 Miscellaneous netCDF Operations..................... 115
9.1 Get Number of Bytes for a Data Type.............................. 116
nctypelen: C Interface............... 116

NCTLEN: FORTRAN Interface 117

10 Higher-Level netCDF Operations 119
101 megen ..o 120

CDL Syntax ... 120

CDL Data Types ... 122

CDL Notation for Data Constants........................ 123

10.2 nedump ..o 126

11 How to Obtain netCDF Software...................... 127
12 Summary of C Interface................................... 129
13 Summary of FORTRAN Interface.................. . 131
Function and Variable Index.................................... 133

General Index 135

Table of Contents

7 Variables..................... ... 65
7.1 Createa Variable. 66
ncvardef: C Interface.............. 66

NCVDEF: FORTRAN Interface 67

7.2 Get a Variable ID from Its Name..................................... 69
nevarid: C Interface.......... 69

NCVID: FORTRAN Interface.............................. 69

7.3 Get Information about a Variable from Its ID 71
nevaring: C Interface ... o 71

NCVINQ: FORTRAN Interface............................ 72

7.4 Write a Single Data Value 74
nevarputl: C Interface............ o 74

NCVPT1: FORTRAN Interface............................ 75

7.5 Write a Hyperslab of Values 77
nevarput: C Interface............ ... 77

NCVPT: FORTRAN Interface 79

7.6 Read a Single Data Value............... ... 81
nevargetl: C Interface..........o o 81

NCVGT1: FORTRAN Interface 82

7.7 Read a Hyperslab of Values............ 84
nevarget: C Interface ... 84

NCVGT, NCVGTC: FORTRAN Interface................. 86

7.8 Reading and Writing Character String Values 88
Clnterface 88

FORTRAN Interface.................. 89

7.9 Missing Values... 91
7.10 Rename a Variable.......... 92
ncvarrename: C Interface............................... ... 92

NCVREN: FORTRAN Interface........................... 93

8 Attributes............. . 95
8.1 Create an Attribute 96
ncattput: C Interface........... 96

NCAPT, NCAPTC: FORTRAN Interface................. 97

8.2 Get Information about an Attribute................ 99
ncatting: C Interface L 99

NCAINQ: FORTRAN Interface........................... 100

8.3 Get Attribute’s Values.......... 102
ncattget: C Interface 102

NCAGT, NCAGTC: FORTRAN Interface 103

8.4 Copy Attribute from One netCDF to Another...................... 105

ncattcopy: C Interface.............. ... L. 105

iii

1i netCDF User’s Guide

5 netCDF Operations ... 37
5.1 netCDF Library Interface Descriptions............................... 37
5.2 CreateanetCDF file 39

ncereate: C Interface. 39
NCCRE: FORTRAN Interface 40
5.3 Open a netCDF File for Access............iiii i, 41
ncopen: C Interface....... 41
NCOPN: FORTRAN Interface............................. 41
5.4 Put Open netCDF File into Define Mode 43
ncredef: C Interface. 43
NCREDEF: FORTRAN Interface............................ 43
5.5 Leave Define Mode 45
ncendef: C Interface...... 45
NCENDF: FORTRAN Interface 45
5.6 Close an Open netCDF File............. 47
ncclose: C Interface. 47
NCCLOS: FORTRAN Interface............................ 48
5.7 Inquire about an Open netCDF File....... 49
ncinquire: C Interface 49
NCINQ: FORTRAN Interface.............................. 50
5.8 Synchronize an Open netCDF File to Disk........................... 51
nesyne: ClInterface ... 51
NCSNC: FORTRAN Interface 52
5.9 Back Out of Recent Definitions 53
ncabort: CInterface.......... 53
NCABOR: FORTRAN Interface........................... 54
6 Dimensions.................... . 55
6.1 Create a Dimension 56
ncedimdef: C Interface. 56
NCDDEF: FORTRAN Interface 57
6.2 Get a Dimension ID from Its Name 58
ncedimid: C Interface........ 58
NCDID: FORTRAN Interface.............................. 59
6.3 Inquire about a Dimension............ i 60
nediming: C Interface 60
NCDINQ: FORTRAN Interface............................ 61
6.4 Rename a Dimension........... 0 i 63
ncdimrename: C Interface............ 63

NCDREN: FORTRAN Interface 64

Table of Contents

Table of Contents

Acknowledgments........................... ... 1
Foreword.. 3
SUmMmMAary ... 5
1 Introduction..... ... 7
1.1 The netCDF Interface..... i 7

1.2 The netCDF is Not a Database Management System................. 7

1.3 What about Performance? 8

1.4 Is netCDF a Good Archive Format? 9

1.5 Background and Evolution of the netCDF Interface 9

1.6 Future Plans for netCDF 11
References 11

2 Components of a netCDF File........................... . 13
2.1 DImensionst 14

2.1.1 Using Dimensions to Specify Variable Shapes.............. 15

2.1.2 Using Dimensions to Relate Variables...................... 15

2.1.3 Using Dimensions to Define Coordinate Systems........... 16

2.2 Variables 16

2.3 Attributes. 18

2.3.1 Attribute Conventions............ L. 19

2.3.2 Differences between Attributes and Variables.............. 21

3 Data. ... 23
3.1 netCDF Data Types... ..o 23

3.2 Data AcCCess. ..o 24

3.3 Data Structures....... ..o 26

4 Use of the netCDF Library 29
4.1 CreatinganetCDF File........... 29

4.2 Reading a netCDF File with Known Names 31

4.3 Reading a netCDF File with Unknown Names....................... 32

4.4 Adding New Dimensions, Variables, Attributes 34

4.5 FError Handling ... 35

138

reading data......... L 81, 84, 88
record dimension 14, 55, 56, 60, 65
record variables 14, 17, 26
record-oriented access Lol i 26
recording data history o o i 20
TECOTdS . oot 26, 55, 60
relating variables oL il 15
relational database systems 7
removing attributes L il 112
renaming attributes o oL 34, 43, 110
renaming dimensions 34, 43, 63
renaming variables o o oo 34, 43, 92
reporting bugs..... L i 127
representation on disk 26
restoring old definitions o .. 35
S

scalar variables L L o 17
scale_factor attribute 20
scaling data L i 20
SeaSpace CDF..... 10
self-describing i 5
shape of a netCDF variable 16
shared access i 51
short CDL type. ... i 17
short constant i . 124
short type........ 23,123, 124
SPArse MAatTICes . ..o vt et 26
specifying variable shapes.............. 15
string length, actual 89
string length, declared oo 89
string-valued attributes...... o L 18
subscript order 24, 25
SUPPTESSING ETTOT TNESSAZES « v v v v e e e e e eenen 35
synchronize a netCDF file 51
T

title attribute 20
Brees 26

netCDF User’s Guide

typelengthso 116
typical netCDF calls 29
U
Unidata CDF Workshops 10
units attribute L. 18, 19, 21
unlimited dimension 14, 15, 17, 55, 56, 60, 65
unlimited dimension ID 49, 50
unsigned ... 23
Vv
valid_max attribute 20
valid_min attribute 20
valid _range attribute........ 19
variable Lo 106
variable attributes....... 16, 18, 19, 71, 72, 96, 99, 122
variable data 31, 74, 75, 77, 79, 81, 82, 84, 86, 97
variable data types......... 17
variable data values oL L 16
variable dimensions 71,
72, T4, 75, 77, 79, 81, 82, 84, 86, 97
variable ID 65, 66, 69
variable IDs o 31
variable indices 74, 75, 77, 79, 81, 82, 84, 86, 97
variable inquire 71
variable name 16, 19, 65, 66, 69, 71, 72, 92, 93
variable shape...................... 16, 65, 66, 71, 88
variable size i 17
variable type L. 65, 66, 71, 72
variable values 21, 65
variable-length strings 88, 89
variables 15, 16, 18, 21, 30, 31, 32, 33, 65, 105
A%
writing character string data.........., 88
writing data o i oL 74, 77, 88

General Index

index variables o i 26
inquire about a netCDF file....................... 49
inquire functions 32
interface descriptions, 37

K

known names..............oo it 31

L

language interfaces....... i i 26
languages supported il 7
Linked lists i 26
long CDL type . oo 17
long constant......... o i i 124
long type....covviii i 23, 123, 124
long_name attribute o L. 19

M

mailing list 127
MAX_NC_DIMS 55
maximum dimensionsc..oeuueennenn.... 66
maximum name length 71,72, 108, 109
maximum number of dimensions 55
maximum number of records....... 60
maximum variable dimensions 66, 67, 71, 72
metadata 18, 21
missing values........ i i 20, 91
missing_value attribute oL o L 20

N

NASACDF .. 9
NC_BYTE type specifier 17
NC_CHAR type specifier......................... 17
NC_DOUBLE type specifier 17
NC_FLOAT type specifier 17
NC_LONG type specifier......................... 17
NC_SHORT type specifier........................ 17
netCDF ..o 7
netCDF attributes o il 13
netCDF components 13
netCDF data types 23, 116
netCDF dimensions oo i 13
netCDF disk representation....................... 88

137
netCDF file creation 29, 39
netCDF file extension 120
netCDF file name. o il 37
netCDF file size 88, 89
netCDF handle o i 37
netCDEID 37, 47
netCDF implementation 55
netCDF library use 29
netCDF names o i 14
netCDF operations............................... 37
netCDF variables ... i 13
netCDF, development of 9
netedfgroup oL 127
network Common Data Form Language (CDL) 13
network-transparent.......... 5
New Mexico Tech. CDF oo o . 10
NSSDC CDF ..o 9
null byte....... 88, 89
number of dimensions 49
number of global attributes............. 49
number of records written oL 60
number of variables L i il 49
numeric values....... o L i i 89
O
obtaining netCDF software 127
opening a netCDF fileo . 31, 41
operating systems supported o L. 7
orderof data i 26
order of dimensions o 26
P
performance 8, 26, 30, 31, 51
POIMBETS . . o e 26
portability 7
portsof netCDF 127
primitive netCDF types 23
putting character string data...................... 88
putting variable data.........., 74, 77, 84

R

reading a netCDF fileo o i il 31

reading character string data...................... 88

136
data mode...................... 30, 34, 45, 51, 53, 95
dataorder.......... 24, 25, 26
data packing 20
data resolution i i 20
data section i 122
data SIZeso 116
data structures i 26
data types........co i 16, 17, 66, 67,
71, 72, 75, 79, 82, 86, 96, 99, 100, 117
database management systems.................. 7,18
default error handling 35
define mode 30, 34, 43, 45, 51, 53, 55, 65, 66, 95
defining attributes o oL 96
defining coordinate systems 16
deleting a netCDF file oo i i 53
deleting attributes oo 34, 43, 112
differences between attributes and variables 21
dimension ID...... 55
dimension IDs 31, 33, 56, 58, 60, 66
dimension IQUITE vttt e e 60
dimension nameoo i 55
dimension names................ 14, 56, 58, 60, 61, 63
dimension size..............ciiiai.... 14, 55, 56, 60
dimensions 14, 18, 30, 31, 32, 33, 55
double CDL type ... 17
double constant.......... i il 125
double type 23,123, 124, 125
E
efficiency L. 8, 26, 30, 31, 51
error conditionsoovunt it 37
error handling i 35
EITOT INESSAZES . . ot vt vttt it et ee et e 35
EITOT OPHIONS .. o\ v it 35
EITOT TEtUINS 35
example conventions, 37
EXaMpPles . .. 37
external data representation (XDR)................ 8
F
fatal errors L L 35
fill values 20, 91

fixed-length character strings 88

netCDF User’s Guide

fixed-size strings....... i 88, 89
float CDL type ... 17
float constant. i 124
float data type 123
float type.... ... 23, 124
FORTRAN interface o oot 5
FORTRAN, generation of 120
FORTRAN_format attribute 20
FTP access. ... 127
function prototypes 37
future changes planned 7, 23,123
Future Plans o i 11

G

generating code....... ... i i 120
generating netCDF files 120
generic applications 18, 19, 20, 31, 32, 55, 108
generic filters oL 20
getting attribute name L 108
getting attribute values........... 102
getting character string data...................... 88
getting dimension ID...... 58
getting dimension name 60
getting dimension Size.............coveuteinian.. 60
getting variable data o L 81
getting variable name L oL oL 71
getting variable shapeo 71
getting variable type L i il 71

global attributes ... 18, 19, 49, 95, 96, 99, 100, 103, 122

H

higher-level netCDF operations 119
history attribute L 20
history of the netCDF 9
hyperslab access 31, 77, 84, 88
hyperslab access example 24
hyperslab corner 24, 25, 88
hyperslab edge lengths..................... 24, 25, 88
hyperslabs 24

I

TEEE floating-point............ 8, 23
index order 24, 25

General Index

General Index

A

abnormal termination oL 30
aborting define mode. L o il 35
aborting definitions o o 53
abstract data type 7
add_offset attribute.......... 20
adding attributes........... oL 34, 43
adding dimensions L 34, 43
adding variables oo 34, 43
archive formats i i 9
ASCII characters, 23
attribute conventions....... i L. 19
attribute deletion oL i i 108
attribute ID oo o 108
attribute inquire 99
attribute length 18, 19, 88, 95, 100, 103, 123
attribute names.......... 18, 95,

96, 97, 99, 100, 103, 108, 110, 112, 116
attribute numberso L oL ol 108
attribute operations............ 95
attribute space 95
attribute type......... 18, 19, 95, 96, 98, 100, 103, 123
attribute values............... 18, 21, 95, 96, 102, 103
attribute variable ID 100, 102, 108, 109, 112, 113
attributes 18, 21, 30, 32, 33, 95
availability of netCDF software..................... 7

B

backing out of definitions 53
byte CDL type 17
byte constant............ 124
byte data type......... 123
byte type ..o 23, 124

C

C, generation of L i 120
C_format attribute 20
canceling definitions oL 53
CANDIS ... 10
CDF Description Language 120

CDL attribute initialization
CDL attributes
CDL constants
CDL data types
CDL dimensions

CDL example

CDL notation
CDL reserved words
CDL syntax
CDL variable declarations
CDL variable initialization
CDL variables
char CDL type
char data type

character constant
character string data
character strings
character type
character-position dimension
character-string attributes
character-string values
closing a netCDF file..........
common netCDF calls
computing environments
conventional attributes
conventions in examples

coordinate variables

copying attributes
creating a dimension
creating a netCDF file.......

creating a variable

creating attributes

data compression

data formats

135

............................. 121, 122
............................. 123, 124

134

NCGOPT .. 36
NCINQ ..o 32, 33, 49, 50, 61
ncinquire i 32, 33, 49, 60
NCLONG....... 17, 67, 72, 75, 79, 82, 86, 98, 100, 117
NCNOCLOB ... ot 39, 40, 46, 48, 57
NCNOWRIT 41, 43, 50, 52, 59, 61, 70, 72
NCOPOIL. « . ovee e eennn 31, 32, 34, 41, 43, 49, 51, 53,

58, 60, 63, 69, 71, 74, 78, 81, 85, 88,
92, 97, 99, 102, 105, 108, 110, 112, 116
NCOPN............ 31, 32, 34, 41, 42, 43, 50, 52, 54, 59,
61, 64, 70, 72, 75, 80, 83, 87, 90, 93,
98, 100, 104, 106, 109, 111, 113, 117

NCOPES < et e 35
NCPOPT .. 36
ncredef............ 34, 43, 53, 63, 88, 92, 97, 105, 112
NCREDF 34, 43, 53, 54, 64, 90, 93, 98, 106, 113
NCSHORT 17, 67, 72, 75, 79, 82, 86, 98, 100, 117
NCSHC . ..o e 30, 51, 52
TCSYIIC « ottt et et et et et e e e 30, 51
NCTLENot e 116, 117
nctypelen...... il 102, 116
NCUNLIM ... 57, 67
ncvardef L L L L 29, 30, 34, 66, 88
ncvarget........ ...l 31, 32, 33, 84, 85, 88

ncvargetl. ...l 31, 33, 81

netCDF User’s Guide

nevarid. oL 31, 69, 71, 74, 78, 81, 85,
92,97,99, 102, 105, 108, 110, 112, 116
NCVATING .. ot vtee et 32, 33, 71, 108, 116
nevarput. ...l 29, 30, 34, 77, 78, 88
nevarputl. ... 30, 74
NCVATTENAIME . . ot ottt vt ettt et et et e eeaen 92
NCVDEF...... ..., 29, 30, 34, 66, 67, 90
NCVERBOS ... 36
NCVGIC. . .o e 31, 33, 81
NCVGT.......coviiiiiin. 31, 32, 33, 84, 86, 87, 88
NCVGTL 31, 33, 81, 82, 83
NCVGTC ..., 31, 32, 33, 84, 86, 88, 89
NCVID............... 31, 69, 70, 72, 75, 80, 83, 87, 93,
98, 100, 104, 106, 109, 111, 113, 117
NCVINQ........covvneiinan... 32,33, 71, 72,109, 117
NCVPIC. .o 74
NCVPT........oiiiiiiien. 29, 30, 34, 77, 79, 80, 88
NCVPTL .o vee e e e e 30, 74, 75
NCVPTCc.ciinen... 29, 30, 34, 77, 88, 89, 90
NCVPTCL. . o e e 30
NCVREN . oot e et e 92, 93
NCWRITE ... 41, 54, 64
R
TCOAE oot vttt 36

Function and Variable Index 133

Function and Variable Index

E (70 112, 113
ETTOT TELUTIIS ... ot et e e 35 NCAGT.................inn 31, 32, 33, 102, 103, 104
NCAGTC. ..., 31, 32, 33, 102, 103, 104
M NCAINQ........cvviniienan. 32, 33, 99, 100, 103, 104
MAX _NC_NAME . oo oo - NCANAM o i, 33, 95, 108, 109
MAX_VAR_DIMS . oo 66, 71 116 NCAPTt 29, 30, 34, 96, 97, 98
MAX_NC_NAME - oo oo 60, 108 NCAPTC. ..., 29, 30, 34, 96, 97, 98
MAXNONAM - 61,72, 109 NCAREN e 110, 111
ncattcopy....... . 105
MAXVDIMS ... 67,72, 117
ncattdel L L 112
ncattget ... il 31, 32, 33, 102
N ncatting......... i il 32, 33, 99, 102
NC_BYTE..................... .. 17, 66, 71, 96, 116 ncattname, 32, 33, 95, 108
NC_CHAR 17, 66, 71, 88, 96, 97, 116 ncattput............. i 29, 30, 34, 96, 97
NC_CLOBBER........ i 39, 66, 67 ncattrename 110
NC_DOUBLE................. 17, 66, 71, 96, 97, 116 NCBYTE....... 17, 67, 72, 75, 79, 82, 86, 98, 100, 117
NC_FATAL ... i 35 NCCHAR ... 17, 67, 72, 75, 79, 82, 86, 90, 98, 100, 117
NC_FLOAT 17, 66, 71, 96, 116 NCCLOB ..o 40
NC_GLOBAL...... 95, 96, 97, 112 NCCLOS............... 29, 30, 31, 32, 34, 35, 47, 48, 53
NC_LONG ... 17, 66, 71, 96, 116 NCCLOSE .o 29, 30, 31, 32, 34, 35, 47, 53
NC_NOCLOBBER........... . i 39, 47 NCCRE..........covviinnn. 29, 39, 40, 46, 48, 57, 67
NC_NOWRITE................. .. 43, 49, 58, 69, 71 nccreate.iiiiiiiin.... 29, 39, 45, 47, 56, 66
NC_SHORT 17, 66, 71, 96, 116 NCDDEFo 29, 30, 34, 54, 56, 57, 67, 90
NC_type. .ot 66, 71, 96, 116 WCDID ..ottt e e 31, 58, 59, 61, 64
NC_UNLIMITED ... i 13, 66 nedimdef L. 29, 30, 34, 53, 56, 66, 88
NC_VERBOSE 35 nedimid ... 31, 58, 60, 63
NC_WRITE............ooooooiiioi 51, 53, 63 NCAIMING . o vttt e 32, 33, 60
NC_BYTE......ooooo o 99 NCAIMPENamME . .. oot i et e et ettt 63
NC_CHAR ... 99 NCDINQ. ..o oot 32, 33, 60, 61
NC_DOUBLE. ... 99 NCDOUBLE....17, 67, 72, 75, 79, 82, 86, 98, 100, 117
NC_FLOAT............., 99 NCDRENot e 63, 64
NC_GLOBAL...................... 99, 102, 105, 108 NCAUMP « v v vv vttt 13, 119, 123, 126
NC_LONG. ..o 99 ncendef 29, 30, 34,
NC_NOCLOBBER........... . i 45, 56 35, 45, 47, 51, 63, 88, 92, 97, 105, 112
NC_NOWRITE 41, 60 NCENDF . ..o 29, 30, 34, 35,
NC_SHORT ... 99 45, 46, 47, 51, 64, 90, 93, 98, 106, 113
NC_tYPe ot 99, 102 DICEIT &t ettt e et et e e e et e e 35
NC_UNLIMITED ... oo 56 NCFATAL .. 36
NC_WRITE ... 41, 74 NCFLOAT...... 17, 67, 72, 75, 79, 82, 86, 98, 100, 117
NCABOR. .. .ot 35, 47, 53, 54 NCGEN . ..o\ 13, 119, 120, 123, 126
NCAbOTT .. o\t 35, 47, 53 NCGLOBAL 98, 100, 104, 106, 109, 113

132

INTEGER NVARS
INTEGER NATTS

INTEGER RECDIM
CHARACTER* (*) DIMNAME
INTEGER SIZE

INTEGER DIMID
CHARACTER* (%) VARNAME
INTEGER DATATYPE
INTEGER NVDIMS
INTEGER VDIMS(NDIMS)
INTEGER VARID

INTEGER NVATTS
INTEGER INDICES(NDIMS)
CHARACTER CHVAL
CHARACTER* (%) STRING
INTEGER LENSTR

DOUBLE VALUE

REAL VALUE

INTEGER VALUE

INTEGER START(NVDIMS)
INTEGER COUNTS(NVDIMS)
CHARACTER* (%) ATTNAME
INTEGER ATTLEN
INTEGER INCDFID
INTEGER INVARID
INTEGER OUTCDFID
INTEGER OUTVARID
INTEGER ATTNUM
CHARACTER* (*) NEWNAME
INTEGER VARIDS(*)
INTEGER DIMINS(*)
INTEGER DIMAXS(*)
INTEGER LNCDFID

netCDF User’s Guide

number of variables in netCDF

number of global attributes in netCDF
dimension ID of unlimited dimension
name for dimension

size of dimension

dimension ID from NCDDEF or NCDID
name for variable

data type code, one of NCBYTE, ...,
number of dimensions in a variable
dimension IDs for a variable, giving its shape
variable ID from NCVDEF or NCVID, or NCGLOBAL
number of attributes assigned to a variable
coordinates of a single element of a variable
character value of variable or attribute
character array value of variable or attribute
length of character array value

double precision value of variable or attribute
real value of variable or attribute

integer value of variable or attribute

corner of hyperslab of values of a variable
edge lengths of hyperslab of values

attribute name

number of elements in an attribute vector
input netCDF ID

input variable ID

output netCDF ID

output variable ID

attribute number

new attribute name

IDs of variables in netCDF link subset

lower limit of indices in hyperslab of link
upper limit of indices in hyperslab of link
netCDF ID of link

NCDOUBLE

Summary of FORTRAN Interface 131

13. Summary of FORTRAN Interface

Input parameters are in upper case, output parameters are in lower case. The FORTRAN types

of all the parameters are listed below the subroutine and function declarations.

INTEGER FUNCTION NCCRE(PATHNAME,CLOBMODE, rcode)

INTEGER FUNCTION NCOPN(PATHNAME,RWMODE, rcode)

SUBROUTINE NCREDF(CDFID, rcode)

SUBROUTINE NCENDF(CDFID, rcode)

SUBROUTINE NCCLOS(CDFID, rcode)

SUBROUTINE NCINQ(CDFID, ndims,nvars,natts,recdim,rcode)

SUBROUTINE NCSNC(CDFID, rcode)

SUBROUTINE NCABOR(CDFID, rcode)

INTEGER FUNCTION NCDDEF(CDFID,DIMNAME,SIZE, rcode)

INTEGER FUNCTION NCDID(CDFID,DIMNAME, rcode)

SUBROUTINE NCDINQ(CDFID,DIMID, dimname,size,rcode)

SUBROUTINE NCDREN(CDFID,DIMID,DIMNAME, rcode)

INTEGER FUNCTION NCVDEF(CDFID,VARNAME,DATATYPE,NVDIMS,VDIMS, rcode)
INTEGER FUNCTION NCVID(CDFID,VARNAME, rcode)

SUBROUTINE NCVINQ(CDFID,VARID, varname,datatype,nvdims,vdims,nvatts,rcode)
SUBROUTINE NCVPT1(CDFID,VARID,INDICES,VALUE, rcode)

SUBROUTINE NCVP1C(CDFID,VARID,INDICES, CHVAL, rcode)

SUBROUTINE NCVGT1(CDFID,VARID,INDICES, value, rcode)

SUBROUTINE NCVG1C(CDFID,VARID,INDICES, chval, rcode)

SUBROUTINE NCVPT(CDFID,VARID,START,COUNTS,VALUE, rcode)

SUBROUTINE NCVPTC(CDFID,VARID,START,COUNTS,STRING,LENSTR, rcode)
SUBROUTINE NCVGT(CDFID,VARID,START,COUNTS, value,rcode)

SUBROUTINE NCVGTC(CDFID,VARID,START,COUNTS, string,LENSTR,rcode)
SUBROUTINE NCVREN(CDFID,VARID,VARNAME, rcode)

SUBROUTINE NCAPT(CDFID,VARID,ATTNAME,DATATYPE,ATTLEN,VALUE, rcode)
SUBROUTINE NCAPTC(CDFID,VARID,ATTNAME,DATATYPE,LENSTR,STRING, rcode)
SUBROUTINE NCAINQ(CDFID,VARID,ATTNAME, datatype,attlen,rcode)
SUBROUTINE NCAGT(CDFID,VARID,ATTNAME, value,rcode)

SUBROUTINE NCAGTC(CDFID,VARID,ATTNAME, string,LENSTR,rcode)
SUBROUTINE NCACPY(INCDFID,INVARID,ATTNAME,OUTCDFID,OUTVARID, rcode)
SUBROUTINE NCANAM(CDFID,VARID,ATTNUM, attname,rcode)

SUBROUTINE NCAREN(CDFID,VARID,ATTNAME,NEWNAME, rcode)

SUBROUTINE NCADEL(CDFID,VARID,ATTNAME, rcode)

INTEGER FUNCTION NCTLEN(DATATYPE, rcode)

SUBROUTINE NCPOPT(NCOPTS)

SUBROUTINE NCGOPT(ncopts)

CHARACTER* (*) PATHNAME ! absolute or relative name of netCDF file
INTEGER CLOBMODE ! either NCCLOB or NCNOCLOB
INTEGER RWMODE ! either NCWRITE or NCNOWRIT
INTEGER RCODE ! returned error code, 0 if no errors
INTEGER CDFID ! netCDF ID, returned by NCCRE or NCOPN

[}

INTEGER NDIMS number of dimensions in netCDF

130 netCDF User’s Guide

Summary of C Interface

12. Summary of C Interface

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int
int

int
int
int
int
int
int
int

nccreate(char* path,int cmode);

ncopen(char* path,int mode);

ncredef (int cdfid);

ncendef (int cdfid);

ncclose(int cdfid);

ncinquire(int cdfid,int* ndims,int* nvars,int* natts,int* recdim);

ncsync(int cdfid);

ncabort(int cdfid);

ncdimdef (int cdfid,char* name,int length);

ncdimid(int cdfid,char* name);

ncdiming(int cdfid,int dimid,char* name,int* length);

ncdimrename(int cdfid,int dimid,char* name);

ncvardef (int cdfid,char* name,nc_type datatype,int ndims,int dim[]);

ncvarid(int cdfid,char* name);

ncvaring(int cdfid,int varid,char* name,nc_type* datatype,int* ndims,

int dim[],int* natts);

ncvarputl(int cdfid,int varid,int coords[],void* value);

ncvargetl(int cdfid,int varid,int coords[],voidx* value);

ncvarput(int cdfid,int varid,int start[],int count[],void* value);

ncvarget(int cdfid,int varid,int start[],int count[],voidx* value);

ncvarrename(int cdfid,int varid,char* name);

ncattput(int cdfid,int varid,char* name,nc_type datatype,int len,
void* value);

ncatting(int cdfid,int varid,char* name,nc_type* datatype,int* len);

ncattget(int cdfid,int varid,char* name,voidx* value) ;

ncattcopy(int incdf,int invar,char* name,int outcdf,int outvar);

ncattname(int cdfid,int varid,int attnum,char* name);

ncattrename(int cdfid,int varid,char* name,char* newname);

ncattdel(int cdfid,int varid,char* name);

nctypelen(nc_type datatype);

129

128 netCDF User’s Guide

How to Obtain netCDF Software 127

11. How to Obtain netCDF Software

The current version of netCDF software is available using anonymous FTP.

The netCDF C interface has been compiled and tested successfully on a Sun 3 and SPARCstation
under Sun0S, a DEC VAX under VMS, a DEC VAX and DECstation 3100 under Ultrix, an Apple
Macintosh II under MacOS, a Compaq 80386 under 386-ix, a NeXT under MACH, a Stellar under
Stellix , and a Cray XMP under UNICOS. Since there is no standard for FORTRAN to C interfaces,
the set of FORTRAN jackets that provide the FORTRAN interface on top of the C library varies
for each machine architecture and set of compilers. Consequently, the FORTRAN interface has so
far only been tested successfully on a Sun 3 and SPARCstation under SunOS, a DEC VAX under
VMS, a DEC VAX under Ultrix, and a DECstation 3100 under Ultrix.

Included in the software distribution are: the C source for the netCDF data access library, C
source for the FORTRAN jacket library for UNIX and VMS FORTRAN compilers, source for the
netCDF utilities ncdump and negen, a directory of test programs to verify the correct implemen-
tation of the netCDF library in new environments, and XDR source code for environments that do
not yet support XDR. Instructions for porting the netCDF software to a new environment are also

included.

For UNIX systems, a compressed tar file can be accessed (in binary mode) from the file
netcdf.tar.Zin the anonymous FTP directory of unidata.ucar.edu. VMS sites can get a backup
saveset of the same software from the anonymous FTP directory of laurel.ucar.edu. The software
distribution includes a PostScript file of the netCDF User’s Guide.

A mailing list, netcdfgroup@unidata.ucar.edu, is available for discussion of the netCDF in-
terface and announcements about netCDF bugs, fixes, and enhancements. To subscribe, send a

request to netcdfgroup-adm@unidata.ucar.edu.

126 netCDF User’s Guide

10.2 ncdump

ncdump is a tool that generates an ASCII representation of a netCDF file, either with or without
an ASCII representation of the variable data in the file. The ASCII representation used is the CDL
notation that ncgen accepts as input. Thus ncdump and ncgen can be used as inverses to transform

data representation between binary and ASCII representations.
UNIX syntax for invoking ncdump:

ncdump [-h] [-c¢] [-n namel [inputfile]

where:

-h Produce only the “header” information in the output file; that is, the declarations of
dimensions and variables but no data values for the variables.

-c Produce the “header” information in the output file and the data values for coordinate

variables (variables that are also dimensions).

-n name Specify a different name for the CDL description than the default. CDL requires a
name for a CDL description that is used by cdfgen to generate the file name for an
output netCDF file. By default this name is constructed from the last component of
the pathname of the input file by stripping off any extension it has (conventionally,
.cdf is used as an extension for netCDF files). Use this option to specify a different

name.

Higher-Level netCDF Operations 125

The float type is appropriate for representing data with about seven significant digits of pre-
cision. The form of a float constant is the same as a C floating-point constant with an £ or F
appended. A decimal point is required in a CDL float to distinguish it from an integer. For
example, the following are all acceptable float constants:

-2.0f

3.14159265358979f // will be truncated to less precision
1.f
L1f

The double type is appropriate for representing floating-point data with about 16 significant
digits of precision. The form of a double constant is the same as a C floating point constant. An
optional d or D may be appended. A decimal point is required in a CDL double to distinguish it
from an integer. For example, the following are all acceptable double constants:

-2.0
3.141592653589793
1.0e-20

1.4

124 netCDF User’s Guide

when it is defined.) Since neither C nor FORTRAN provide suitable standard syntax to distinguish
between constants of type byte and char, short and long, or float and double (except that
FORTRAN provides the latter), CDL defines a syntax for constant values that allows it to determine
the netCDF type of any constant. The syntax for CDL constants is similar to C syntax, except
that type suffixes are appended to shorts and floats to distinguish them from longs and doubles.

A byte constant is represented by a single character or multiple character escape sequence

enclosed in single quotes. For example,

- // ASCII a
’\0? // a zero byte
’\n’ // ASCII newline character

’\33’ // ASCII escape character (33 octal)
’\x2b’> // ASCII plus (2b hex)
’\377°> // 377 octal = 255 decimal, a non-ASCII byte

Character constants are enclosed in double quotes. A character array may be represented as
a string enclosed in double quotes. The usual escape conventions for C strings are honored. For

example,

fa! // ASCII ‘a’
"Two\nlines\n" // a 10-character string with two embedded newlines
"a bell:\007" // a string containing an ASCII bell

The form of a short constant is an integer constant with an s or S appended. If a short
constant begins with 0, it is interpreted as octal, except that if it begins with 0x, it is interpreted

as a hexadecimal constant. For example:

2s // a short 2
0123s // octal
O0x7ffs // hexadecimal

The form of a long constant is an ordinary integer constant, although it is acceptable to append
an optional 1 or L. If a long constant begins with 0, it is interpreted as octal, except that if
it begins with 0x, it is interpreted as a hexadecimal constant. IExamples of valid long constants

include:

-2

1234567890L

0123 // octal

Ox7ff // hexadecimal

Higher-Level netCDF Operations 123

Except for the added data-type byte and the lack of the type qualifier unsigned, CDL supports
the same primitive data types as C. The names for the primitive data types are reserved words in
CDL, so the names of variables, dimensions, and attributes must not be type names. In declarations,

type names may be specified in either upper or lower case.

Bytes differ from characters in that they are intended to hold eight bits of data, and the zero
byte has no special significance, as it may for character data. ncgen converts byte declarations

to char declarations in the output C code and to the nonstandard BYTE declaration in output

FORTRAN code.

Shorts can hold values between -32768 and 32767. ncgen converts short declarations to short
declarations in the output C code and to the nonstandard INTEGER*2 declaration in output FOR-
TRAN code.

Longs can hold values between -2147483648 and 2147483647. ncgen converts long declarations
to long declarations in the output C code and to INTEGER declarations in output FORTRAN code.

int and integer are accepted as synonyms for long in CDL declarations.

Floats can hold values between about -3.4+38 and 3.4+38. Their external representation is as
32-bit IEEE normalized single-precision floating point numbers. ncgen converts float declarations
to float declarations in the output C code and to REAL declarations in output FORTRAN code.

real is accepted as a synonym for float in CDL declarations.

Doubles can hold values between about -1.7+308 and 1.7+308. Their external representation is as
64-bit IEEE standard normalized double-precision, floating point numbers. ncgen converts double
declarations to double declarations in the output C code and to DOUBLE PRECISION declarations in
output FORTRAN code.

CDL Notation for Data Constants

This section explains the current CDL notation for netCDF constants. This remains one of
the more volatile parts of the netCDF software. Neither CDL nor the utility programs that use
it (ncdump and ncgen) are part of the netCDF procedural interface yet, and so the information

presented here is subject to change.

Attributes are initialized in the variables section of a CDL description by providing a list of
constants that determines the attribute’s type and length. (In the C and FORTRAN procedural
interfaces to the netCDF library, the type and length of an attribute must be explicitly provided

122 netCDF User’s Guide

as degrees Celsius. An attribute has an associated variable, a name, a data type, a length, and
a value. In contrast to variables that are intended for data, attributes are intended for metadata
(data about data).

In CDL, an attribute is designated by a variable and attribute name, separated by a colon (:).
It is possible to assign global attributes not associated with any variable to the netCDF file as a
whole by using the colon (:) before the attribute name. The data type of an attribute in CDL
is derived from the type of the value assigned to it. The length of an attribute is the number of
data values or the number of characters in the character string assigned to it. Multiple values are
assigned to noncharacter attributes by separating the values with commas (,). All values assigned
to an attribute must be of the same type.

The optional data section of a CDIL description is where netCDF variables may be initialized.

The syntax of an initialization is simple:
variable = value_1, value_2, .. ;

The comma-delimited list of constants may be separated by spaces, tabs, and newlines. For
multidimensional arrays, the last dimension varies fastest. Thus, row-order rather than column
order is used for matrices. If fewer values are supplied than are needed to fill a variable, it is
extended with a type-dependent fill value. The types of constants need not match the type declared
for a variable; coercions are done to convert integers to floating point, for example. All meaningful

type conversions are supported.

CDL Data Types

The CDL data types are:

char Character strings.

byte Eight-bit data, including zero bytes.

short 16-bit signed integers.

long 32-bit signed integers.

int (Synonymous with long).

float IEEE single-precision floating point (32 bits).
real (Synonymous with float).

double IEEE double-precision floating point (64 bits).

Higher-Level netCDF Operations 121

netcdf foo { // example netCDF specification in CDL

dimensions:
lat = 9, lon = 5, time = unlimited ;

variables:
long lat(lat), lon(lon), time(time);
float z(time,lat,lon), t(time,lat,lon);
double p(time,lat,lon);
long rh(time,lat,lon);

lat:units = '"degrees North";
lon:units = '"degrees East';
time:units = "seconds";

z:units = "meters above sea level";
z:valid range = 0., 5000.;
p:missing value = -9999.;
rh:missing value = -1;

data:
lat = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;
lon -140, -118, -96, -84, -52;

¥

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used
freely for readability. Comments may follow the double slash characters // on any line.

A CDL description consists of three optional parts: dimensions, variables, and data. The
variable part may contain variable declarations and attribute assignments.

A dimension is used to define the shape of one or more of the multidimensional variables de-
scribed by the CDL description. A dimension has a name and a size. At most one dimension in
a CDL description can have the unlimited size, which means a variable using this dimension can
grow to any length (like a record number in a file).

A variable represents a multidimensional array of values of the same type. A variable has a
name, a data type, and a shape described by its list of dimensions. Each variable may also have
associated attributes (see below) as well as data values. The name, data type, and shape of a
variable are specified by its declaration in the variable section of a CDL description. A variable
may have the same name as a dimension; by convention such a variable is one-dimensional and
contains coordinates of the dimension it names. Dimensions need not have corresponding variables.

An attribute contains information about a variable or about the whole netCDF data set. At-
tributes are used to specify such properties as units, special values, maximum and minimum valid
values, scaling factors, offsets, and parameters. Attribute information is represented by single val-
ues or arrays of values. For example, units is an attribute represented by a character array such

120 netCDF User’s Guide

10.1 ncgen

ncgen is a tool that generates a netCDF file or the C or FORTRAN programs required to
create the netCDF file. The input to ncgen is a description of a netCDF file in a tiny language
known as CDL (netCDF description language). If no options are specified in invoking ncgen, the
program merely checks the syntax of the CDL input, producing error messages for any violations
of CDL syntax. Other options can be used to create a netCDF file or to generate a program in C
or FORTRAN that calls the routines required to create the netCDF file.

UNIX syntax for invoking ncgen:
ncgen [-n]l [-o outputfile] [-cl [-f] [inputfile]

where:

-n Create a netCDF file. If the -o option is absent, a default file name will be constructed
from the netCDF name (specified after the netcdf keyword in the input) by appending
the . cdf extension. If a file already exists with the specified name, it will be overwritten.

-o outputfile
Name for the netCDF file created. If this option is specified, it implies the -n option.
(This option is necessary because netCDF files are random access files created with
fseek() calls, and hence cannot be written to the standard output.)

-c Generate C source code that will create a netCDF file matching the netCDF specifica-
tion. The C source code is written to standard output.

-f Generate FORTRAN source code that will create a netCDF file matching the netCDF
specification. The FORTRAN source code is written to standard output.

CDL Syntax

Below is an example of CDL, describing a netCDF file with several named dimensions (lat,
lon, time), variables (z, t, p, rh, lat, lon, time), variable attributes (units, valid_range,

missing_value), and some data.

Higher-Level netCDF Operations 119

10. Higher-Level netCDF Operations

One of the primary reasons for using the netCDF interface for both scientific data and applica-
tions that deal with scientific data is to take advantage of the higher-level netCDF operations and
generic applications for processing netCDF files. Currently there are only a few such higher-level

operations available. Below we describe ncgen and ncdump, two tools for converting between binary
netCDF files and an ASCII representation of netCDF files.

118 netCDF User’s Guide

Miscellaneous netCDF Operations 117

NCTLEN: FORTRAN Interface

INTEGER FUNCTION NCTLEN (INTEGER TYPE ,INTEGER RCODE)

TYPE One of the set of predefined netCDF data types. The valid netCDF data types are
NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCTLEN to determine how many bytes are required to store a single

value of the variable rh in an existing netCDF file named ‘foo.cdf’:

INCLUDE ’netcdf.inc’

! netCDF ID
! variable ID
! variable name

INTEGER CDFID !
|
|
! variable type
|
|
|
|

INTEGER RHID
CHARACTER*31 RHNAME
INTEGER RHTYPE

INTEGER RHN

INTEGER RHDIMS(MAXVDIMS)
INTEGER RHNATT

INTEGER RHBYTS

! number of dimensions
! variable shape

! number of attributes
! bytes per value

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE)
* get type of "rh"
CALL NCVINQ (CDFID, RHID, RHNAME, RHTYPE, RHN, RHDIMS, RHNATT,
+ RCODE)
RHBYTS = NCTLEN (RHTYPE)

116

netCDF User’s Guide

9.1 Get Number of Bytes for a Data Type

The function nctypelen (or NCTLEN for FORTRAN) returns the number of bytes per netCDF

data type.

In case of an error, nctypelen returns -1; NCTLEN returns a nonzero value in rcode. Possible

causes of errors include

e The specified data type is not a valid netCDF data type.

nctypelen: C Interface

int nctypelen (nc_type datatype);

datatype One of the set of predefined netCDF data types. The type of this parameter, nc_type,
is defined in the netCDF header file. The valid netCDF data types are NC_BYTE,
NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

Here is an example using nctypelen to determine how many bytes are required to store a single

value of the variable rh in an existing netCDF file named ‘foo.cdf’:

#include "netcdf.h"

int cdfid; /* netCDF ID x/
int rh_id; /* variable ID */
nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[MAX_VAR_DIMS]; /* variable shape */

int rh_natts; /* number of attributes */

int rhbytes; /* number of bytes per value for "rh" */

cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id = ncvarid (cdfid, "rh");

/* get type. we don’t need name, since we already know it */
ncvaring (cdfid, rh_id, (char *) O, &rh_type, &rh_ndims, rh_dims,

&rh_natts);
rhbytes = nctypelen (rh_type)

Miscellaneous netCDF Operations 115

9. Miscellaneous netCDF Operations

Other miscellaneous operations supported by this interface include

e Get number of bytes for a given data type.

114 netCDF User’s Guide

Attributes 113

NCADEL: FORTRAN Interface

SUBROUTINE NCADEL (INTEGER CDFID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable ID of the attribute’s variable, or NCGLOBAL for a global attribute.

ATTNAM The original attribute name.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCADEL to delete the variable attribute Units for a variable rh in an
existing netCDF file named ‘foo.cdf”:

INCLUDE ’netcdf.inc’

INTEGER CDFID ! netCDF ID
INTEGER RHID ! variable ID

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)
RHID = NCVID (CDFID, ’rh’, RCODE)

* delete attribute
CALL NCREDF (CDFID) ! enter define mode

CALL NCADEL (CDFID, RHID, ’Units’, RCODE)
CALL NCENDF (CDFID) ! leave define mode

112 netCDF User’s Guide

8.7 Delete an Attribute

The function ncattdel (or NCADEL for FORTRAN) deletes a netCDF attribute from an open
netCDF file. The netCDF file must be in define mode.

In case of an error, ncattdel returns -1; NCADEL returns a nonzero value in rcode. Possible

causes of errors include

The specified variable ID is not valid.

The specified netCDF file is in data mode.

The specified attribute does not exist.
The specified netCDF ID does not refer to an open netCDF file.

ncattdel: C Interface

int ncattdel (int cdfid, int varid, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable ID of the attribute’s variable, or NC_GLOBAL for a global attribute.
name The name of the attribute to be deleted.

Here is an example using ncattdel to delete the variable attribute Units for a variable rh in

an existing netCDF file named ‘foo.cdf’:

#include "netcdf.h"

int cdfid; /* netCDF ID x/
int rh_id; /* variable ID */

cdfid = ncopen('"foo.cdf", NC_WRITE);

rh_id = ncvarid (cdfid, "rh");

/* delete attribute */

ncredef (cdfid); /* enter define mode */
ncattdel(cdfid, rh_id, "Units");

ncendef (cdfid); /* leave define mode */

Attributes 111

NCAREN: FORTRAN Interface

SUBROUTINE NCAREN (INTEGER CDFID, INTEGER VARID,

+ CHARACTER* (*) ATTNAM,

+ CHARACTER* (*) NEWNAM, INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE
VARID variable ID of the attribute’s variable, or NCGLOBAL for a global attribute

ATTNAM The original attribute name.

NEWNAM The new name to be assigned to the specified attribute. If the new name is longer than
the old name, the netCDF file must be in define mode.

RCODE returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAREN to rename the variable attribute units to Units for a variable

rh in an existing netCDF file named ‘foo.cdf”:

INCLUDE "netcdf.inc"

INTEGER CDFID ! netCDF ID
INTEGER RHID ! variable ID

CDFID = NCOPN ("foo.cdf", NCNOWRIT, RCODE)
RHID = NCVID (CDFID, '"rh'", RCODE)

* rename attribute
CALL NCAREN (CDFID, RHID, "units", "Units'", RCODE);

110 netCDF User’s Guide

8.6 Rename an Attribute

The function ncattrename (or NCAREN for FORTRAN) changes the name of an attribute. If
the new name is longer than the original name, the netCDF must be in define mode. You cannot

rename an attribute to have the same name as another attribute of the same variable.

In case of an error, ncattrename returns -1; NCAREN returns a nonzero value in rcode. Possible

causes of errors include

e The specified variable ID is not valid.

e The new attribute name is already in use for another attribute of the specified variable.

e The specified netCDF file is in data mode and the new name is longer than the old name.
e The specified attribute does not exist.

e The specified netCDF ID does not refer to an open netCDF file.

ncattrename: C Interface

int ncattrename (int cdfid, int varid, char* name, char* newname);

cdfid netCDF ID, returned from a previous call to ncopen or nccreate
varid variable 1D of the attribute’s variable, or NC_GLOBAL for a global attribute
name The original attribute name.

newname The new name to be assigned to the specified attribute. If the new name is longer than
the old name, the netCDF file must be in define mode.

Here is an example using ncattrename to rename the variable attribute units to Units for a

variable rh in an existing netCDF file named ‘foo.cdf’:

#include "netcdf.h"

int cdfid; /* netCDF id */
int rh_id; /* variable id */
cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id

ncvarid (cdfid, "rh");

/* rename attribute */
ncattrename(cdfid, rh_id, "units", "Units");

Attributes

#incl
int
int
char
cdfid
rh_id

/* ge
ncatt

109
ude "netcdf.h"
cdfid; /* netCDF ID %/
rh_id; /* variable ID */

attname [MAX_NC_NAME]; /* maximum-size attribute name */

= ncopen("foo.cdf", NC_NOWRITE);

ncvarid (cdfid, "rh");

t name of first attribute (number 0) */
name(cdfid, rh_id, 0, attname);

NCANAM: FORTRAN Interface

CDFID
VARID
ATTNUM

ATTNAM

RCODE

SUBROUTINE NCANAM (INTEGER CDFID, INTEGER VARID,
+ INTEGER ATTNUM, CHARACTER#*(*) ATTNAM,
+ INTEGER RCODE)

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
ID of the attribute’s variable, or NCGLOBAL for a global attribute.

Number of the attribute. The attributes for each variable are numbered from 1 (the
first attribute) to NVATTS, where NVATTS is the number of attributes for the variable,
as returned from a call to NCVINQ.

Returned attribute name. The caller must allocate space for the returned name. The
maximum possible length, in characters, of an attribute name is given by the predefined
constant MAXNCNAM.

Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCANAM determine the name of the first attribute of the variable rh in

an existing netCDF file named ‘foo.cdf’

* 31

* got

INCLUDE ’netcdf.inc’

INTEGER CDFID ! netCDF ID

INTEGER RHID ! variable ID

in the following should be MAXNCNAM
CHARACTER*31 ATTNAM

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)
RHID = NCVID (CDFID, ’rh’, RCODE)

name of first attribute (number 1)
CALL NCANAM (CDFID, RHID, 1, ATTNAM, RCODE)

108 netCDF User’s Guide

8.5 Get Name of Attribute from Its Number

The function ncattname (or NCANAM for FORTRAN) gets the name of an attribute, given its
variable ID and number as an attribute of that variable. This function is useful in generic applica-
tions that need to get the names of all the attributes associated with a variable, since attributes are
accessed by name rather than number in all other attribute functions. The number of an attribute
is more volatile than the name, since it can change when other attributes of the same variable are
deleted. This is why an attribute number is not called an attribute ID.

In case of an error, ncattname returns -1; NCANAM returns a nonzero value in rcode. Possible
causes of errors include

e The specified variable ID is not valid.

e The specified attribute number is negative or more than the number of attributes defined for
the specified variable.

e The specified attribute does not exist.

e The specified netCDF ID does not refer to an open netCDF file.

ncattname: C Interface

int ncattname (int cdfid, int varid, int attnum, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid ID of the attribute’s variable, or NC_GLOBAL for a global attribute.
attnum Number of the attribute. The attributes for each variable are numbered from 0 (the

first attribute) to nvatts-1, where nvatts is the number of attributes for the variable,
as returned from a call to ncvaring.

name Returned attribute name. The caller must allocate space for the returned name. The
maximum possible length, in characters, of an attribute name is given by the predefined
constant MAX_NC_NAME. If the name parameter is given as (char *) 0, no name will be
returned so no space needs to be allocated.

Here is an example using ncattname to determine the name of the first attribute of the variable
rh in an existing netCDF file named ‘foo.cdf”

Attributes

INCLUDE ’netcdf.inc’

INTEGER CDFID1, CDFID2 ! netCDF IDs
INTEGER RHID, AVRHID ! variable IDs
CDFID1 = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

CDFID2 = NCOPN (’bar.cdf’, NCWRITE, RCODE)

RHID = NCVID (CDFID1, ’rh’, RCODE)
AVRHID = NCVID (CDFID2, ’avgrh’, RCODE)

CALL NCREDF (CDFID2) ! enter define mode

* copy variable attribute from "rh" to "avgrh"

CALL NCACPY (CDFID1, RHID, ’units’, CDFID2, AVRHID, RCODE)

CALL NCACPY (CDFID, NCGLOBAL, ’title’, TITLE)

CALL NCENDF (CDFID2) ! leave define mode

107

106

netCDF User’s Guide

#include "netcdf.h"

int cdfidl, cdfid2; /* netCDF IDs */

int

rh_id, avgrh_id; /* variable IDs */

cdfidl = ncopen('"foo.cdf", NC_NOWRITE);

cdfid2

ncopen("bar.cdf", NC_WRITE);

rh_id = ncvarid (cdfidil, "rh");
avgrh_id = ncvarid (cdfid2, "avgrh");

ncredef (cdfid2); /* enter define mode */
/* copy variable attribute from "rh" to "avgrh" */
ncattcopy(cdfidl, rh_id, "units", cdfid2, avgrh_id);

ncendef (cdfid2); /* leave define mode */

NCACPY: FORTRAN Interface

INCDF

INVAR

ATTNAM
OUTCDF

OUTVAR

SUBROUTINE NCACPY (INTEGER INCDF, INTEGER INVAR,
+ CHARACTER* (*) ATTNAM, INTEGER QUTCDF,
+ INTEGER OUTVAR, INTEGER RCODE)

The netCDF ID of an input netCDF file from which the attribute will be copied,
returned from a previous call to NCOPN or NCCRE.

ID of the variable in the input netCDF file from which the attribute will be copied, or
NCGLOBAL for a global attribute.

Name of the attribute in the input netCDF file to be copied.

The netCDF ID of the output netCDF file to which the attribute will be copied,
returned from a previous call to NCOPN or NCCRE. It is permissible for the input and
output netCDF IDs to be the same. The output netCDF file should be in define mode
if the attribute to be copied does not already exist for the target variable, or if it would

cause an existing target attribute to grow.

ID of the variable in the output netCDF file to which the attribute will be copied, or
NCGLOBAL to copy to a global attribute.

Here is an example using NCACPY to copy the variable attribute units from the variable rh in

an existing netCDF file named ‘foo.cdf’ to the variable avgrh in another existing netCDF file

named ‘bar.cdf’, assuming that the variable avgrh already exists, but does not yet have a units

attribute:

Attributes 105

8.4 Copy Attribute from One netCDF to Another

The function ncattcopy (or NCACPY for FORTRAN) copies an attribute from one open netCDF
file to another. It can also be used to copy an attribute from one variable to another within the
same netCDF.

In case of an error, ncattcopy returns -1; NCACPY returns a nonzero value in rcode. Possible

causes of errors include

e The input or output variable ID is invalid for the specified netCDF file.

e The specified attribute does not exist.

e The output netCDF is not in define mode and the attribute is new for the output file is larger
than the existing attribute.

e The input or output netCDF ID does not refer to an open netCDF file.

ncattcopy: C Interface
int ncattcopy(int incdf, int invar, char* name, int outcdf, int outvar);

incdf The netCDF ID of an input netCDF file from which the attribute will be copied,
returned from a previous call to ncopen or nccreate.

invar ID of the variable in the input netCDF file from which the attribute will be copied, or
NC_GLOBAL for a global attribute.

name Name of the attribute in the input netCDF file to be copied.

outcdf The netCDF ID of the output netCDF file to which the attribute will be copied,
returned from a previous call to ncopen or nccreate. It is permissible for the input
and output netCDF IDs to be the same. The output netCDF file should be in define
mode if the attribute to be copied does not already exist for the target variable, or if
it would cause an existing target attribute to grow.

outvar ID of the variable in the output netCDF file to which the attribute will be copied, or
NC_GLOBAL to copy to a global attribute.

Here is an example using ncattcopy to copy the variable attribute units from the variable rh
in an existing netCDVF file named ‘foo.cdf’ to the variable avgrh in another existing netCDF file
named ‘bar.cdf’, assuming that the variable avgrh already exists, but does not yet have a units
attribute:

104

STRING
LENSTR
RCODE

Here is an example using NCAGT to determine the values of an attribute named valid_range for
anetCDF variable named rh and a global attribute named title in an existing netCDVF file named
‘foo.cdf’. In this example, it is assumed that we don’t know how many values will be returned,

so we first inquire about the length of the attributes to make sure we have enough space to store

them:

netCDF User’s Guide

space to reserve, call NCAINQ first to find out the length of the attribute. Warning:

neither the compiler nor the netCDF software can detect if the wrong type of data is

used.

In NCAGTC, the character-string value of the attribute.
In NCAGTC, the actual string length of the STRING parameter in the caller.

Returned error code. If no errors occurred, 0 is returned.

INCLUDE ’netcdf.inc’

PARAMETER (MVRLEN=3) ! max number of "valid_range" values
PARAMETER (MTLEN=80) ! max length of "title" attribute
INTEGER CDFID, RCODE

INTEGER RHID ! variable ID

INTEGER VRTYPE, TTYPE ! attribute types
INTEGER VRLEN, TLEN ! attribute lengths
DOUBLE PRECISION VRVAL(MVRLEN) ! vr attribute values
CHARACTER*80 TITLE ! title attribute values

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE) ! get ID

* find out attribute lengths, to make sure we have enough space

CALL NCAINQ (CDFID, RHID, ’valid_range’, VRTYPE, VRLEN,
+ RCODE)

CALL NCAINQ (CDFID, NCGLOBAL, ’title’, TTYPE, TLEN,

+ RCODE)

* got attribute values, if not too big

IF (VRLEN > MVRLEN) THEN

WRITE (*,*) ’valid_range attribute too big!’

CALL EXIT
ELSE

CALL NCAGT (CDFID, RHID, ’valid_range’, VRVAL, RCODE)
ENDIF
IF (TLEN > MTLEN) THEN

WRITE (*,*) ’title attribute too big!’

CALL EXIT
ELSE

CALL NCAGTC (CDFID, NCGLOBAL, ’title’, TITLE, MTLEN, RCODE)
ENDIF

Attributes 103

#include "netcdf.h"

int cdfid; /* netCDF ID x/

int rh_id; /* variable ID */

nc_type vr_type, t_type; /* attribute types */

int vr_len, t_len; /* attribute lengths */
double #*vr_val; /* ptr to attribute values */
char *title; /* ptr to attribute values */
extern char *malloc(); /* memory allocator */

cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id = ncvarid (cdfid, "rh");

/* find out how much space is needed for attribute values */
ncatting (cdfid, rh_id, "valid_range", &vr_type, &vr_len);
ncatting (cdfid, NC_GLOBAL, "title", &t_type, &t_len);

/* allocate required space before retrieving values */
vr_val = (double *) malloc(vr_len * nctypelen(vr_type));
title = (char *) malloc(t_len * nctypelen(t_type));

/* get attribute values */

ncattget(cdfid, rh_id, "valid_range", (void *)vr_val);
ncattget(cdfid, NC_GLOBAL, "title", (void *)title);

NCAGT, NCAGTC: FORTRAN Interface

SUBROUTINE NCAGT (INTEGER CDFID, INTEGER VARID,

+ CHARACTER* (*) ATTNAM, type VALUES,
+ INTEGER RCODE)
SUBROUTINE NCAGTC (INTEGER CDFID, INTEGER VARID,
+ CHARACTER* (*) ATTNAM, CHARACTER*(*) STRING,
+ INTEGER LENSTR, INTEGER RCODE)

There are two FORTRAN subroutines, NCAGT and NCAGTC, for retrieving attribute values. The
first is for attributes of numeric type, and the second is for attributes of character-string type.

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable ID of the attribute’s variable, or NCGLOBAL for a global attribute.
ATTNAM Attribute name.

VALUES Returned attribute values. All elements of the vector of attribute values are returned,
so the user must provide enough space to hold them. If you don’t know how much

102 netCDF User’s Guide

8.3 Get Attribute’s Values

The function ncattget (or NCAGT or NCAGTC for FORTRAN) gets the value(s) of a netCDF

attribute, given its variable ID and name.

In case of an error, ncattget returns -1; NCAGT returns a nonzero value in rcode. Possible

causes of errors include

e The variable ID is invalid for the specified netCDF file.
e The specified attribute does not exist.

e The specified netCDF ID does not refer to an open netCDF file.

ncattget: C Interface

int ncattget(int cdfid, int varid, char* name, void* value);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

varid Variable ID of the attribute’s variable, or NC_GLOBAL for a global attribute.

name Attribute name.

value Returned attribute values. All elements of the vector of attribute values are returned,

so you must allocate enough space to hold them. If you don’t know how much space
to reserve, call ncatting first to find out the length of the attribute.

Here is an example using ncattget to determine the values of a variable attribute named
valid_range for a netCDF variable named rh and a global attribute named title in an existing
netCDF file named ‘foo.cdf’. In this example, it is assumed that we don’t know how many values
will be returned, but that we do know the types of the attributes. Hence, to allocate enough space
to store them, we must first inquire about the length of the attributes.

Attributes 101

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE

INTEGER RHID ! variable ID
INTEGER VRTYPE, TTYPE ! attribute types
INTEGER VRLEN, TLEN ! attribute lengths

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)
RHID = NCVID (CDFID, ’rh’, RCODE)! get ID

CALL NCAINQ (CDFID, RHID, ’valid_range’, VRTYPE, VRLEN,
+ RCODE)

CALL NCAINQ (CDFID, NCGLOBAL, ’title’, TTYPE, TLEN,

+ RCODE)

100

#include "netcdf.h"

int cdfid;

int rh_id;

nc_type vr_type, t_type;
int vr_len, t_len;

/*
/*
/*
/*

netCDF User’s Guide

netCDF ID */
variable ID */
attribute types */
attribute lengths *’

cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id

ncvarid (cdfid, "rh");

ncatting (cdfid, rh_id, "valid_range", &vr_type, &vr_len);
ncatting (cdfid, NC_GLOBAL, "title", &t_type, &t_len);

NCAINQ: FORTRAN Interface

SUBROUTINE NCAINQ (INTEGER CDFID, INTEGER VARID,

+ CHARACTER#*(*) ATTNAM, INTEGER ATTYPE,
+ INTEGER ATTLEN,INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable ID of the attribute’s variable, or NCGLOBAL for a global attribute.

ATTNAM Attribute name.

ATTYPE Returned attribute type, one of the set of predefined netCDF data types. The valid
netCDF data types are NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

ATTLEN Returned number of values currently stored in the attribute. For a string-valued at-

tribute, this is the number of characters in the string.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAINQ to add a variable attribute named valid_range for a netCDF

variable named rh and a global attribute named title to an existing netCDF file named ‘foo.cdf”:

Attributes 99

8.2 Get Information about an Attribute

The function ncatting (or NCAINQ for FORTRAN) returns information about a netCDF at-
tribute, given its variable ID and name. The information returned is the type and length of the
attribute.

In case of an error, ncatting returns -1; NCAINQ returns a nonzero value in rcode. Possible

causes of errors include

e The variable ID is invalid for the specified netCDF file.
e The specified attribute does not exist.

e The specified netCDF ID does not refer to an open netCDF file.

ncatting: C Interface

int ncattinq(int cdfid, int varid, char* name,
nc_typex datatype, int* len);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable ID of the attribute’s variable, or NC_GLOBAL for a global attribute.
name Attribute name.

datatype Returned attribute type, one of the set of predefined netCDF data types. The type of
this parameter, nc_type, is defined in the netCDI header file. The valid netCDF data
types are NC_BYTE, NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

len Returned number of values currently stored in the attribute. If the attribute is of type
NC_CHAR, this is one more than the string length (since the terminating null character

is stored).

Here is an example using ncatting to find out the type and length of a variable attribute named
valid_range for a netCDF variable named rh and a global attribute named title in an existing
netCDF file named ‘foo.cdf’

98

ATTYPE

ATTLEN
VALUE

STRING
LENSTR
RCODE

netCDF User’s Guide

alphanumeric characters including the underscore (_). Case is significant. Attribute
name conventions are assumed by some netCDF generic applications, e.g., units as
the name for a string attribute that gives the units for a netCDF variable. A table
of conventional attribute names is presented in the earlier chapter on the netCDF
interface.

One of the set of predefined netCDF data types. The valid netCDF data types are
NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

In NCAPT, the number of numeric values provided for the attribute.

In NCAPT, an array of ATTLEN data values. The data should be of the appropriate type
for the netCDF attribute. Warning: neither the compiler nor the netCDF software
can detect if the wrong type of data is used.

In NCAPTC, the character-string value of the attribute.
In NCAPTC, the actual string length of the STRING parameter.

Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAPT to add a variable attribute named valid_range for a netCDF

variable named rh and a global attribute named title to an existing netCDF file named ‘foo.cdf”:

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE

INTEGER RHID | variable ID
DOUBLE RHRNGE(2)

DATA RHRNGE /0.0DO, 100.0DO/

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)

CALL NCREDF (CDFID) ! enter define mode
RHID = NCVID (CDFID, ’rh’, RCODE)! get ID

CALL NCAPT (CDFID, RHID, ’valid_range’, NCDOUBLE, 2,

+ RHRNGE, RCODE)
CALL NCAPTC (CDFID, NCGLOBAL, ’title’, NCCHAR, 19,
+ ’example netCDF file’, RCODE)

CALL NCENDF (CDFID) ! leave define mode

Attributes 97

of the appropriate type for the netCDF attribute. Warning: neither the compiler nor
the netCDF software can detect if the wrong type of data is used.

Here is an example using ncattput to add a variable attribute named valid_range for a netCDF
variable named rh and a global attribute named title to an existing netCDF file named ‘foo.cdf”:

#include "netcdf.h"

int cdfid; /* netCDF ID x/

int rh_id; /* variable ID */

static double rh_range[] = {0.0, 100.0}; /* attribute vals */
static char title[] = "example netCDF file';

cdfid = ncopen('"foo.cdf", NC_WRITE);

ncredef (cdfid); /* enter define mode */
rh_id = ncvarid (cdfid, "rh");

ncattput (cdfid, rh_id, "valid_range", NC_DOUBLE, 2, rh_range);
ncattput (cdfid, NC_GLOBAL, "title", NC_CHAR, strlen(title)+1,
title);

ncendef (cdfid); /* leave define mode */

NCAPT, NCAPTC: FORTRAN Interface

SUBROUTINE NCAPT (INTEGER CDFID, INTEGER VARID,

+ CHARACTER* (*) ATTNAM, INTEGER ATTYPE,
+ INTEGER ATTLEN, type VALUE,
+ INTEGER RCODE)

SUBROUTINE NCAPTC (INTEGER CDFID, INTEGER VARID,
+ CHARACTER* (*) ATTNAM, INTEGER ATTYPE,
+ INTEGER LENSTR, CHARACTER#*(*) STRING,
+ INTEGER RCODE)

There are two FORTRAN subroutines, NCAPT and NCAPTC, for creating attributes. The first is

for attributes of numeric type, and the second is for attributes of character-string type.

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable 1D, returned from a previous call to NCVDEF or NCVID.
ATTNAM Attribute name. Must begin with an alphabetic character, followed by zero or more

96

netCDF User’s Guide

8.1 Create an Attribute

The function ncattput (or NCAPT or NCAPTC for FORTRAN) adds or changes a variable attribute
or global attribute of an open netCDF file. If this attribute is new, or if the space required to store
the attribute is greater than before, the netCDF file must be in define mode.

In case of an error, ncattput returns -1; NCAPT returns a nonzero value in rcode. Possible

causes of errors include

e The variable ID is invalid for the specified netCDF file.
e The specified netCDF type is invalid.

e The specified length is negative.

e The specified open netCDF file is in data mode and the specified attribute would expand.

e The specified open netCDF file is in data mode and the specified attribute does not already

exist.

e The specified netCDF ID does not refer to an open netCDF file.

ncattput: C Interface

int ncattput(int cdfid, int varid, char* name, nc_type datatype,

cdfid

varid

name

datatype

len

values

int len, void* values);

netCDF 1D, returned from a previous call to ncopen or nccreate.

Variable ID of the variable to which the attribute will be assigned or NC_GLOBAL for a
global attribute.

Attribute name. Must begin with an alphabetic character, followed by zero or more
alphanumeric characters including the underscore (_). Case is significant. Attribute
name conventions are assumed by some netCDF generic applications, e.g., units as the
name for a string attribute that gives the units for a netCDVF variable. See section 2.3.1
[Attribute Conventions], page 19, for examples of attribute conventions.

One of the set of predefined netCDF data types. The type of this parameter, nc_type,
is defined in the netCDF header file. The valid netCDF data types are NC_BYTE,
NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

Number of values provided for the attribute. If the attribute is of type NC_CHAR, this
is one more than the string length (since the terminating null character is stored).
Pointer to one or more data values. The pointer is declared to be of the type void *
because it can point to data of any of the basic netCDF types. The data should be

Attributes 95

8. Attributes

Attributes may be associated with each netCDF variable to specify such properties as units,
special values, maximum and minimum valid values, scaling factors, and offsets. Attributes for a
netCDF file are defined when it is first created, while the netCDF file is in define mode. Additional
attributes may be added later by reentering define mode. A netCDF attribute has a netCDF
variable to which it is assigned, a name, a type, a length, and a sequence of one or more values.
An attribute is designated by its variable ID and name, except in one case (ncattname or NCANAM
in FORTRAN), where attributes are designated by variable ID and number because their names

are unknown.

The attributes associated with a variable are typically defined right after the variable is created,
while still in define mode. The data type, length, and value of an attribute may be changed even
when in data mode, as long as the changed attribute requires no more space than the attribute as

originally defined.

It is also possible to assign attributes not associated with any variable to the netCDF as a whole,
by using the NC_GLOBAL variable pseudo-1D. Global attributes may be used for purposes such as
providing a title or processing history for a netCDF data set.

Operations supported on attributes are

e Create an attribute, given its variable 1D, name, data type, length, and value.
e Get attribute’s data type and length from its variable ID and name.

o Get attribute’s value from its variable ID and name.

e Copy attribute from one netCDF to another.

e Get name of attribute from its number.

e Rename an attribute.

e Delete an attribute.

94

netCDF User’s Guide

Variables 93

NCVREN: FORTRAN Interface

SUBROUTINE NCVREN (INTEGER CDFID, INTEGER VARID,

+ CHARACTER* (*) NEWNAM, INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable 1D, returned from a previous call to NCVDEF or NCVID.

NEWNAM New name for the specified variable.

Here is an example using NCVREN to rename the variable rh to rel_hum in an existing netCDF

file named ‘foo.cdf’:

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE
INTEGER RHID ! variable ID

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)

CALL NCREDF (CDFFID) ! enter definition mode
RHID = NCVID (CDFID, ’rh’, RCODE) ! get ID
CALL NCVREN (CDFID, RHID, ’rel_hum’, RCODE)
CALL NCENDF (CDFFID) ! leave definition mode

92 netCDF User’s Guide

7.10 Rename a Variable

The function ncvarrename (or NCVREN for FORTRAN) changes the name of a netCDF' variable
in an open netCDF. If the new name is longer than the old name, the netCDF must be in define

mode. You cannot rename a variable to have the name of any existing variable.

In case of an error, ncvarrename returns -1; NCVREN returns a nonzero value in rcode. Possible

causes of errors include

e The new name is in use as the name of another variable.
e The variable ID is invalid for the specified netCDF file.
e The specified netCDF ID does not refer to an open netCDF file.

ncvarrename: C Interface

int ncvarrename(int cdfid, int varid, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable 1D, returned from a previous call to ncvardef or ncvarid.
name New name for the specified variable.

Here is an example using ncvarrename to rename the variable rh to rel_hum in an existing
netCDF file named ‘foo.cdf’

#include "netcdf.h"

int cdfid; /* netCDF ID %/
int rh_id; /* variable ID */

cdfid = ncopen('"foo.cdf", NC_WRITE);

ncredef(cdfid); /* put in define mode to rename variable */
rh_id = ncvarid (cdfid, "rh");

ncvarrename (cdfid, rh_id, "rel_hum");

ncendef(cdfid); /* leave define mode */

Variables 91

7.9 Missing Values

What happens when you try to read a value that was never written in an open netCDF file?
You might expect that this should always be an error, and that you should get an error message
or an error status returned. You do get an error if you try to read data from a netCDF file that is
not open for reading, if the variable ID is invalid for the specified netCDF file, or if the specified
hyperslab is not properly within the range defined by the dimension sizes of the specified variable.
Otherwise, reading a value that was not written returns a special fill value that is a particular value
at one end of the range of each netCDF type used to fill in any missing values when a netCDF
variable is first written. It is also possible to use your own fill value instead, if the default fill value
is a useful value for the variable, or to ignore fill values and use the entire range of each netCDF

type.

There are several reasons for using a fill value instead of an error return for missing data. First,
the interface for hyperslab access would necessarily be more complex and slower if information had
to be returned about whether each value read had been written. Since data may have been written
in a different order from that in which it is later read, it is possibile that only a few values in a
block of retrieved values were never written. Second, it is usually preferable to delay the detection
of missing values until there is a need for the values, since they may not be used in subsequent
computations. Finally, the use of missing values is a common way to represent data points outside
the boundaries of irregular regions of data enclosed by a regular hyperslab, making it possible to
handle such data in a simpler way than would be possible with a more compact representation that
represented the boundary explicitly.

The constant fill values for each type are defined in the include file ‘netcdf .h’ (or ‘netcdf.inc’
for FORTRAN). Fill values are used for filling in missing data whenever a value is put beyond the
end of data that has already been written. The fill values have no other special meaning, so they
can be used for valid values if there is no need for fill values, or if alternate fill values are used.
To use an alternate fill value for a variable, just initialize the variable with the fill value before
you begin writing data to it. If you do this, you should also define an associated variable attribute

missing_value with the appropriate type and value to capture your intent.

Currently the only difference between the netCDF byte and character typesis that the two types
have different default fill values. The fill value for bytes is on the edge of the range, representing
the largest negative value for signed bytes. The fill value for characters, however, is the zero byte,
a more useful value for detecting the end of C character strings.

90 netCDF User’s Guide

same formal parameter to be used for both character values and numeric values. An additional
argument, specifying the declared length of the character string passed as a value, is required for
NCVPTC and NCVGTC. The actual length of the string is specified as the value of the hyperslab
edge-length vector corresponding to the character-position dimension.

Here is an example that defines a record variable, tx, for character strings and stores a character-
string value into the third record using NCVPTC. In this example, we assume the string variable and
data are to be added to an existing netCDF file named ‘foo.cdf’ that already has an unlimited
record dimension time.

INCLUDE ’netcdf.inc’

PARAMETER (TDIMS=2) ! number of TX dimensions
PARAMETER (TXLEN = 15) ! length of example string
INTEGER CDFID, RCODE
INTEGER CHID

INTEGER TIMEID
INTEGER TXID ! variable ID

INTEGER TXDIMS(TDIMS) ! variable shape

INTEGER TSTART(TDIMS), TCOUNT(TDIMS) ! hyperslab
CHARACTER*40 TXVAL ! max length 40

DATA TXVAL /’example string’/

! char position dimension id
! record dimension id
|
|

TXVAL (TXLEN:TXLEN) = CHAR(O) ! null terminate

CDFID = NCOPN(’foo.cdf’, NCWRITE, RCODE)
CALL NCREDF(CDFID) ! enter define mode

* define character-position dimension for strings of max length 40
CHID = NCDDEF(CDFID, "chid", 40, RCODE)

* define a character-string variable
TXDIMS[1] = CHID ! character-position dimension first
TXDIMS[2] = TIMEID
TXID = NCVDEF(CDFID, "tx", NCCHAR, TDIMS, TXDIMS, RCODE)
CALL NCENDF(CDFID) ! leave define mode

* write txval into tx netCDF variable in record 3

TSTART[1] = O ! start at beginning of variable
TSTART[2] = 3 ! record number to write
TCOUNT[1] = TXLEN ! number of chars to write
TCOUNT[2] = 1 ! only write one record

CALL NCVPTC (CDFID, TXID, TSTART, TCOUNT, TXVAL, 40, RCODE)

Variables 89

and data are to be added to an existing netCDF file named ‘foo.cdf’ that already has an unlimited

record dimension time.

#include "netcdf.h"

int cdfid; /* netCDF ID %/

int chid; /* dimension ID for char positions */
int timeid; /* dimension ID for record dimension */
int tx_id; /* variable ID */

#define TDIMS 2 /* dimensionality of tx variable */

int tx_dims[TDIMS]; /#* variable shape */
int tx_start[TDIMS];
int tx_count[TDIMS];
static char tx_val[] =
"example string"; /* string to be put */

cdfid = ncopen('"foo.cdf", NC_WRITE);
ncredef (cdfid); /* enter define mode */

/* define character-position dimension for strings of max length 40 */
chid = ncdimdef(cdfid, "chid", 40);

/* define a character-string variable */

tx_dims[0] = timeid;

tx_dims[1] = chid; /* character-position dimension last */
tx_id = ncvardef (cdfid, "tx", NC_CHAR, TDIMS, tx_dims);

ncendef (cdfid); /* leave define mode */

/* write tx_val into tx netCDF variable in record 3 */

tx_start[0] = 3; /* record number to write %/
tx_start[1] = O; /* start at beginning of variable */
tx_count[0] = 1; /* only write one record */

tx_count[1] strlen(tx_val) + 1; /* number of chars to write */
ncvarput(cdfid, tx_id, tx_start, tx_count, (void *) tx_val);

FORTRAN Interface

In FORTRAN, fixed-size strings may be written to a netCDF file without a terminating char-
acter, to save space. Variable-length strings should follow the C convention of writing strings with
a terminating null byte so that the intended length of the string can be determined when it is later
read by either C or FORTRAN programs.

The FORTRAN interface for reading and writing strings requires the use of different subroutines
for accessing string values and numeric values, because standard FORTRAN does not permit the

88 netCDF User’s Guide

7.8 Reading and Writing Character String Values

Character strings are not a primitive netCDF data type, in part because FORTRAN does not
support the abstraction of variable-length character strings. As a result, a character string cannot
be written or read as a single object in the netCDF interface. Instead, a character string must be
treated as an array of characters, and hyperslab access must be used to read and write character
strings as variable data in netCDF files. Furthermore, variable-length strings are not supported
by the netCDF interface except by convention; for example, you may treat a null (zero) byte as
terminating a character string, but you must explicitly specify the length of strings to be read from

and written to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a single
unit for access; no hyperslab access is necessary (or possible) for attributes. However, the value
of a character-string attribute is still an array of characters with an explicit length that must be
specified when the attribute is defined.

When you define a variable that will have character-string values, use a character-position
dimension as the most quickly varying dimension for the variable (the last dimension for the variable
in C, the first in FORTRAN). The size of the character-position dimension will be the maximum
string length of any value to be stored in the character-string variable. Space for maximum-size
strings will be allocated in the disk representation of character-string variables whether you use the
space or not. If two or more variables have the same maximum length, the same character-position
dimension may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use hyperslab access. This
requires that you specify both a corner and a vector of edge lengths. The character-position
dimension at the corner should be zero (one for FORTRAN). If the length of the string to be
written is n, then the vector of edge lengths will specify n in the character-position dimension, and
one for all the other dimensions, i.e., (1, 1, ..., 1, n) (or (n, 1, 1, ..., 1) in FORTRAN).

C Interface

In C, fixed-size strings may be written to a netCDF file without the terminating null byte, to
save space. Variable-length strings should be written with a terminating null byte so that the
intended length of the string can be determined when it is later read.

Here is an example that defines a record variable, tx, for character strings and stores a character-
string value into the third record using ncvarput. In this example, we assume the string variable

Variables 87

LENSTR For NCVGTC, the declared length of the STRING argument. This should be at least as
large as the product of the elements of the COUNT vector.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVGT to read all the values of the variable named rh from an existing
netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that we know that rh is
dimensioned with lon, lat, and time, and that there are ten lon values, five lat values, and three

time values.

INCLUDE ’netcdf.inc’

PARAMETER (NDIMS=3) ! number of dimensions
PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes
INTEGER CDFID, RCODE

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS) ! hyperslab
DOUBLE RHVALS(LONS, LATS, TIMES)

DATA START /1, 1, 1/ ! start at first value
DATA COUNT /TIMES, LATS, LONS/

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE)! get ID
CALL NCVGT (CDFID, RHID, START, COUNT, RHVALS, RCODE)

86

netCDF User’s Guide

NCVGT, NCVGTC: FORTRAN Interface

SUBROUTINE NCVGT (INTEGER CDFID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ type VALUES, INTEGER RCODE)
SUBROUTINE NCVGTC(INTEGER CDFID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNTS(*),

+ CHARACTER* (*) STRING, INTEGER LENSTR,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVGT and NCVGTC, for reading a hyperslab of values
from a netCDF variable. The first is for reading numeric values from a variable of numeric type,

and the second is for reading character values from a variable of character type.

CDFID
VARID
START

COUNT

VALUES

STRING

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
Variable 1D, returned from a previous call to NCVDEF or NCVID.

A vector of integers specifying the multidimensional index of the corner of the hyperslab
where the first of the data values will be read. The indices are relative to 1, so for
example, the first data value of a variable would have index (1, 1, ..., 1). The size
of START must be the same as the number of dimensions of the specified variable. The
elements of START must correspond to the variable’s dimensions in order. Hence, if the
variable is a record variable, the last index would correspond to the starting record
number for reading the data values.

A vector of integers specifying the multidimensional edge lengths from the corner of
the hyperslab where the first of the data values will be read. To read a single value,
for example, specify COUNT as (1, 1, ..., 1). The size of COUNT is the number of
dimensions of the specified variable. The elements of COUNT correspond to the variable’s
dimensions. Hence, if the variable is a record variable, the last element of COUNT
corresponds to a count of the number of records to read.

For NCVGT, the locations into which the data values will be read. The order in which the
data will be read from the specified hyperslab is with the first dimension varying fastest
(like the ordinary FORTRAN convention). The data may be of a type corresponding
to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be
appropriate for the type of the netCDF variable. Warning: neither the compiler nor
the netCDF software can detect if the wrong type of data is used.

For NCVGTC, the character string into which the character data will be read. The
order in which the characters will be read into the specified hyperslab is with the first
dimension varying fastest (like the FORTRAN convention). The data may be of a type
corresponding to the netCDF types NCCHAR or NCBYTE.

Variables 85

dimensions of the specified variable. The elements of count correspond to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of count
corresponds to a count of the number of records to read.

value Pointer to the first of the locations into which the data values will be read. The order
in which the data will be read from the specified hyperslab is with the last dimension
varying fastest. The pointer is declared to be of the type void * because it can point
to data of any of the basic netCDF types. The data should be of the appropriate type
for the netCDF variable. Warning: neither the compiler nor the netCDF software can
detect if the wrong type of data is used.

Here is an example using ncvarget to read all the values of the variable named rh from an
existing netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that we know
that rh is dimensioned with time, lat, and lon, and that there are three time values, five lat

values, and ten lon values.

#include "netcdf.h"

#tdefine TIMES 3

#tdefine LATS 5

#tdefine LONS 10

int cdfid; /* netCDF ID x/

int rh_id; /* variable ID */

static int start[] {0, 0, 0}; /* start at first value */
static int count[] = {TIMES, LATS, LONS};

double rh_vals[TIMES*LATS*LONS]; /#* array to hold values */

cdfid

ncopen("foo.cdf", NC_NOWRITE);

rh_id = ncvarid (cdfid, "rh");

/* read hyperslab of values from netCDF variable */
ncvarget(cdfid, rh_id, start, count, (void *) rh_vals);

84

netCDF User’s Guide

7.7 Read a Hyperslab of Values

The function ncvarget (or NCVGT or NCVGTC for FORTRAN) reads a hyperslab of values from
a netCDF variable of an open netCDF file. The hyperslab is specified by giving a corner and a

vector of edge lengths. The values are read into consecutive locations with the last (or first for
FORTRAN) dimension of the hyperslab varying fastest. The netCDF file must be in data mode.

In case of an error, ncvarget returns -1; NCVGT returns a nonzero value in rcode. Possible

causes of errors include

e The variable ID is invalid for the specified netCDF file.

e The specified corner indices were out of range for the dimensionality of the specified variable.

For example, a negative index, or an index that is larger than the corresponding dimension

size will cause an error.

e The specified edge lengths added to the specified corner would have referenced data out of

range for the dimensionality of the specified variable. For example, an edge length that is

larger than the corresponding dimension size minus the corner index will cause an error.
e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncvarget: C Interface

cdfid
varid

start

count

int ncvarget(int cdfid, int varid, int start[], int count[],

void *values);

netCDF 1D, returned from a previous call to ncopen or nccreate.
Variable 1D, returned from a previous call to ncvardef or ncvarid.

A vector of integers specifying the multidimensional index of the corner of the hyperslab
where the first of the data values will be read from. The indices are relative to 0, so for
example, the first data value of a variable would have index (0, 0, ..., 0). The size
of start must be the same as the number of dimensions of the specified variable. The
elements of start must correspond to the variable’s dimensions in order. Hence, if the
variable is a record variable, the first index would correspond to the starting record
number for reading the data values.

A vector of integers specifying the multidimensional edge lengths from the corner of
the hyperslab where the first of the data values will be read. To read a single value,
for example, specify count as (1, 1, ..., 1). The size of count is the number of

Variables 83

Here is an example using NCVGT1 to get the (4,3,2) element of the variable named rh in an
existing netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that we know
that rhis dimensioned with lon, lat, and time, so we want to get the value of rh that corresponds
to the fourth lon value, the third lat value, and the second time value:

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE

INTEGER RHID ! variable ID
INTEGER RHINDX(3) ! where to get value
DOUBLE PRECISION RHVAL ! put it here

DATA RHINDX /4, 3, 2/
CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE)! get ID
CALL NCVGT1 (CDFID, RHID, RHINDX, RHVAL, RCODE)

82

#incl
int

int

stati
doubl
cdfid
rh_id

ncvar

netCDF User’s Guide

ude "netcdf.h"

cdfid; /* netCDF ID %/

rh_id; /* variable ID */

c int rh_index[] = {1, 2, 3}; /* where to get value */
e rh_val; /* where to put it */

ncopen("foo.cdf", NC_NOWRITE);

ncvarid (cdfid, "rh");

getl(cdfid, rh_id, rh_index, (void *) &rh_val);

NCVGT1l: FORTRAN Interface

SUBROUTINE NCVGT1 (INTEGER CDFID, INTEGER VARID,

+ INTEGER MINDEX(*), type VALUE,
+ INTEGER RCODE)
SUBROUTINE NCVG1C (INTEGER CDFID, INTEGER VARID,
+ INTEGER MINDEX(*), CHARACTER CHVAL,
+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVGT1 and NCVG1C, for reading a single value from a
variable. The first is for reading a numeric value in a variable of numeric type, and the second is

for reading a character value in a variable of character type.

CDFID
VARID
MINDEX

VALUE

CHVAL

RCODE

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
Variable 1D, returned from a previous call to NCVDEF or NCVID.

The multidimensional index of the the data value to be read. The indices are relative
to 1, so for example, the first data value of a two-dimensional variable has index (1,1).
The elements of mindex correspond to the variable’s dimensions. Hence, if the variable

is a record variable, the last index is the record number.

For NCVGT1, the location into which the data value will be read. The data may be
of a type corresponding to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or
NCDOUBLE, but must be appropriate for the type of the netCDF variable. Warning:
neither the compiler nor the netCDF software can detect if the wrong type of data is

used.

For NCVG1C, the location into which the data value will be read. This should be of a
type character, corresponding to the netCDF types NCCHAR or NCBYTE.

Returned error code. If no errors occurred, 0 is returned.

Variables 81

7.6 Read a Single Data Value

The function ncvargetl (or NCVGT1 or NCVG1C for FORTRAN) gets a single data value from a
variable of an open netCDF file that is in data mode. Inputs are the netCDF ID, the variable ID,
a multidimensional index that specifies which value to get, and the address of a location into which
the data value will be read.

In case of an error, ncvargetl returns -1; NCVGT1 returns a nonzero value in rcode. Possible
causes of errors include

e The variable ID is invalid for the specified netCDF file.

e The specified indices were out of range for the dimensionality of the specified variable. For
example, a negative index or an index that is larger than the corresponding dimension size will

cause an error.
e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncvargetl: C Interface

int ncvargetl(int cdfid, int varid, int mindex[], void *value);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable 1D, returned from a previous call to ncvardef or ncvarid.
mindex The multidimensional index of the the data value to be read. The indices are relative

to 0, so for example, the first data value of a two-dimensional variable would have index
(0,0). The elements of mindex must correspond to the variable’s dimensions. Hence,
if the variable is a record variable, the first index is the record number.

value Pointer to the location into which the data value is read. The pointer is declared to be
of the type void * because it can point to data of any of the basic netCDF types. The
data should be of the appropriate type for the netCDF variable. Warning: neither the
compiler nor the netCDF software can detect if the wrong type for the data value is
used.

Here is an example using ncvargetl to get the (1,2,3) element of the variable named rh in
an existing netCDVF file named ‘foo.cdf’. For simplicity in this example, we assume that we know
that rhis dimensioned with time, lat, and lon, so we want to get the value of rh that corresponds
to the second time value, the third lat value, and the fourth lon value:

80 netCDF User’s Guide

LENSTR For NCVPTC, the declared length of the STRING argument. This should be at least as
large as the product of the elements of the COUNT vector.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVPT to add or change all the values of the variable named rh to 0.5
in an existing netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that we
know that rh is dimensioned with lon, lat, and time, and that there are ten lon values, five lat
values, and three time values.

INCLUDE ’netcdf.inc’

PARAMETER (NDIMS=3) ! number of dimensions
PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes
INTEGER CDFID, RCODE

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS) ! hyperslab

DOUBLE RHVALS(LONS, LATS, TIMES)

DATA START /1, 1, 1/ ! start at first value
DATA COUNT /LONS, LATS, TIMES/

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE) ! get ID
DO 10 ILON = 1, LONS
DO 10 ILAT = 1, LATS
DO 10 ITIME = 1, TIMES
RHVALS(ILON, ILAT, ITIME) = 0.5
10 CONTINUE
CALL NCVPT (CDFID, RHID, START, COUNT, RHVALS, RCODE)

Variables

79

NCVPT: FORTRAN Interface

SUBROUTINE NCVPT (INTEGER CDFID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ type VALUES, INTEGER RCODE)
SUBROUTINE NCVPTC(INTEGER CDFID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNTS(*),

+ CHARACTER* (*) STRING, INTEGER LENSTR,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVPT and NCVPTC, for writing a hyperslab of values into

a netCDF variable. The first is for writing numeric values into a variable of numeric type, and the

second is for writing character values into a variable of character type.

CDFID
VARID
START

COUNT

VALUES

STRING

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
Variable 1D, returned from a previous call to NCVDEF or NCVID.

A vector of integers specifying the multidimensional index of the corner of the hyperslab
where the first of the data values will be written. The indices are relative to 1, so for
example, the first data value of a variable would have index (1, 1, ..., 1). The size
of START must be the same as the number of dimensions of the specified variable. The
elements of START must correspond to the variable’s dimensions in order. Hence, if the
variable is a record variable, the last index would correspond to the starting record
number for writing the data values.

A vector of integers specifying the multidimensional edge lengths from the corner of
the hyperslab where the first of the data values will be written. To write a single
value, for example, specify COUNT as (1, 1, ..., 1). The size of COUNT is the number of
dimensions of the specified variable. The elements of COUNT correspond to the variable’s
dimensions. Hence, if the variable is a record variable, the last element of COUNT
corresponds to a count of the number of records to write.

For NCVPT, the block of data values to be written. The order in which the data will be
written into the specified hyperslab is with the first dimension varying fastest (like the
ordinary FORTRAN convention). The data may be of a type corresponding to any of
the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be appropriate
for the type of the netCDF variable. Warning: neither the compiler nor the netCDF

software can detect if the wrong type of data is used.

For NCVPTC, the characters to be written. The order in which the characters will be
written into the specified hyperslab is with the first dimension varying fastest (like the
FORTRAN convention). The data may be of a type corresponding to the netCDF
types NCCHAR or NCBYTE.

78

value

netCDF User’s Guide

value, for example, specify count as (1, 1, ..., 1). The size of count is the number of
dimensions of the specified variable. The elements of count correspond to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of count
corresponds to a count of the number of records to write.

Pointer to a block of data values to be written. The order in which the data will be
written into the specified hyperslab is with the last dimension varying fastest. The
pointer is declared to be of the type void * because it can point to data of any of
the basic netCDF types. The data should be of the appropriate type for the netCDF
variable. Warning: neither the compiler nor the netCDF software can detect if the
wrong type of data is used.

Here is an example using ncvarput to add or change all the values of the variable named rh to

0.5 in an existing netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that

we know that rh is dimensioned with time, lat, and lon, and that there are three time values,

five lat values, and ten lon values.

#include "netcdf.h"

#define TIMES 3
#define LATS 5
#define LONS 10

int
int

static int start[]

cdfid; /* netCDF ID %/
rh_id; /* variable ID */
{0, 0, 0}; /* start at first value */

static int count[] = {TIMES, LATS, LONS};
double rh_vals[TIMES*LATS*LONS]; /#* array to hold values */

int

i;

cdfid = ncopen('"foo.cdf", NC_WRITE);

rh_id

ncvarid (cdfid, "rh");

for (1 = 0; i < TIMES*LATS*LONS; i++)

rh_vals[i] = 0.5;

/* write hyperslab of values into netCDF variable */
ncvarput(cdfid, rh_id, start, count, (void *) rh_vals);

Variables 77

7.5 Write a Hyperslab of Values

The function ncvarput (or NCVPT or NCVPTC for FORTRAN) writes a hyperslab of values into
a netCDF variable of an open netCDF file. The hyperslab is specified by giving a corner and a
vector of edge lengths. The values are specified as a vector whose elements are ordered by assuming

that the last dimension of the hyperslab varies fastest for C, the first dimension varies fastest for

FORTRAN. The netCDF file must be in data mode.

In case of an error, ncvarput returns -1; NCVPT returns a nonzero value in rcode. Possible
causes of errors include

e The variable ID is invalid for the specified netCDF file.

e The specified corner indices were out of range for the dimensionality of the specified variable.
For example, a negative index, or an index that is larger than the corresponding dimension
size will cause an error.

e The specified edge lengths added to the specified corner would have referenced data out of
range for the dimensionality of the specified variable. For example, an edge length that is
larger than the corresponding dimension size minus the corner index will cause an error.

e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncvarput: C Interface

int ncvarput(int cdfid, int varid, int start[], int count[],
void *values);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable 1D, returned from a previous call to ncvardef or ncvarid.
start A vector of integers specifying the multidimensional index of the corner of the hyperslab

where the first of the data values will be written. The indices are relative to 0, so for
example, the first data value of a variable would have index (0, 0, ..., 0). The size
of start must be the same as the number of dimensions of the specified variable. The
elements of start must correspond to the variable’s dimensions in order. Hence, if the
variable is a record variable, the first index would correspond to the starting record

number for writing the data values.

count A vector of integers specifying the multidimensional edge lengths from the corner of
the hyperslab where the first of the data values will be written. To write a single

76 netCDF User’s Guide

that rh is dimensioned with lon, lat, and time, so we want to set the value of rh that corresponds

to the fourth lon value, the third lat value, and the second time value:

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE

INTEGER RHID ! variable ID
INTEGER RHINDX(3) ! where to put value
DATA RHINDX /4, 3, 2/

CDFID = NCOPN (’foo.cdf’, NCWRITE, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE) ! get ID
CALL NCVPT1 (CDFID, RHID, RHINDX, 0.5, RCODE)

Variables

75

#include "netcdf.h"

int
int
stati
stati

cdfid

rh_id

cdfid; /* netCDF ID x/

rh_id; /* variable ID */

¢ int rh_index[] = {1, 2, 3}; /#* where to put value */
¢ double rh_val = 0.5; /* value to put */

ncopen("foo.cdf", NC_WRITE);

ncvarid (cdfid, "rh");

ncvarputl(cdfid, rh_id, rh_index, (void *) &rh_val);

NCVPT1: FORTRAN Interface

There ar

SUBROUTINE NCVPT1 (INTEGER CDFID, INTEGER VARID,

+ INTEGER MINDEX(x*), type VALUE,
+ INTEGER RCODE)
SUBROUTINE NCVP1C (INTEGER CDFID, INTEGER VARID,
+ INTEGER MINDEX(*), CHARACTER CHVAL,
+ INTEGER RCODE)
e two FORTRAN subroutines, NCVPT1 and NCVP1C, for putting a single value in a

variable. The first is for putting a numeric value in a variable of numeric type, and the second is

for putting a character value in a variable of character type.

CDFID
VARID
MINDEX

VALUE

CHVAL

RCODE

netCDF 1D, returned from a previous call to NCOPN or NCCRE.

Variable 1D, returned from a previous call to NCVDEF or NCVID.

The multidimensional index of the the data value to be written. The indices are relative
to 1, so for example, the first data value of a two-dimensional variable would have index
(1,1). The elements of mindex must correspond to the variable’s dimensions. Hence, if
the variable is a record variable, the last index would correspond to the record number.
For NCVPT1, the data value to be written. The data may be of a type corresponding
to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be
appropriate for the type of the netCDF variable. Warning: neither the compiler nor
the netCDF software can detect if the wrong type of data is used.

For NCVP1C, the data value to be written. The data should be of a type character,
corresponding to the netCDF types NCCHAR or NCBYTE.

Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVPT1 to set the (4,3,2) element of the variable named rh to 0.5 in

an existing netCDVF file named ‘foo.cdf’. For simplicity in this example, we assume that we know

74 netCDF User’s Guide

7.4 Write a Single Data Value

The function ncvarputi (or NCVPT1 or NCVP1C for FORTRAN) puts a single data value into a
variable of an open netCDF file that is in data mode. Inputs are the netCDF ID, the variable ID,
a multidimensional index that specifies which value to add or alter, and the data value.

In case of an error, ncvarputil returns -1; NCVPT1 returns a nonzero value in rcode. Possible
causes of errors include

e The variable ID is invalid for the specified netCDF file.

e The specified indices were out of range for the dimensionality of the specified variable. For
example, a negative index, or an index that is larger than the corresponding dimension size
will cause an error.

e The specified netCDF is in define mode rather than data mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncvarputl: C Interface

int ncvarputl(int cdfid, int varid, int mindex[], void *value);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
varid Variable 1D, returned from a previous call to ncvardef or ncvarid.
mindex The multidimensional index of the the data value to be written. the indices are relative

to 0, so for example, the first data value of a two-dimensional variable would have index
(0,0). The elements of mindex must correspond to the variable’s dimensions. Hence, if
the variable is a record variable, the first index would correspond to the record number.

value Pointer to the data value to be written. The pointer is declared to be of type void *
because it can point to data of any of the basic netCDF types. The data should be of
the appropriate type for the netCDF variable. Warning: neither the compiler nor the
netCDF software can detect if the wrong type of data is used.

Here is an example using ncvarputl to set the (1,2,3) element of the variable named rh to
0.5 in an existing netCDF file named ‘foo.cdf’. For simplicity in this example, we assume that
we know that rh is dimensioned with time, lat, and lon, so we want to set the value of rh that

corresponds to the second time value, the third lat value, and the fourth lon value:

Variables

73

Here is an example using NCVINQ to find out about a variable named rh in an existing netCDF

file named ‘foo.cdf’:

INCLUDE ’netcdf.inc’

INTEGER
INTEGER

CDFID, RCODE
RHID

CHARACTER*31 RHNAME

INTEGER
INTEGER
INTEGER
INTEGER

RHTYPE

RHN

RHDIMS (MAXVDIMS)
RHNATT

! variable ID
! variable name

variable type

! number of dimensions
! variable shape
! number of attributes

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE)! get ID

CALL NCVINQ (CDFID, RHID, RHNAME, RHTYPE, RHN, RHDIMS, RHNATT,

RCODE)

72 netCDF User’s Guide

file named ‘foo.cdf’:

#include "netcdf.h"

int cdfid; /* netCDF ID %/

int rh_id; /* variable ID */

nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[MAX_VAR_DIMS]; /* variable shape */

int rh_natts /* number of attributes */

cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id = ncvarid (cdfid, "rh");

/* we don’t need name, since we already know it */

ncvaring (cdfid, rh_id, (char *) O, &rh_type, &rh_ndims, rh_dims,
&rh_natts);

NCVINQ: FORTRAN Interface

SUBROUTINE NCVINQ (INTEGER CDFID, INTEGER VARID,

+ CHARACTER#*(*) VARNAM, INTEGER VARTYP,
+ INTEGER NVDIMS, INTEGER VDIMS(*),
+ INTEGER NVATTS, INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
VARID Variable 1D, returned from a previous call to NCVDEF or NCVID.
VARNAM Returned variable name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a variable name is given by the predefined
constant MAXNCNAM.

VARTYP Returned variable type, one of the set of predefined netCDF data types. The valid
netCDF data types are NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

NVDIMS Returned number of dimensions for the variable. For example, 2 specifies a matrix, 1
specifies a vector, and 0 means the variable is a scalar with no dimensions.

VDIMS Returned vector of NVDIMS dimension IDs corresponding to the variable dimensions.
The caller must allocate enough space for a vector of at least NVDIMS integers to be
returned. The maximum possible number of dimensions for a variable is given by the
predefined constant MAXVDIMS.

NVATTS Returned number of variable attributes assigned to this variable.

RCODE Returned error code. If no errors occurred, 0 is returned.

Variables

71

7.3 Get Information about a Variable from Its ID

The function ncvaring (or NCVINQ for FORTRAN) returns information about a netCDF vari-
able, given its ID. The information returned is the name, type, number of dimensions, a list of

dimension IDs describing the shape of the variable, and the number of variable attributes that have

been assigned to the variable.

In case of an error, ncvaring returns -1; NCVINQ returns a nonzero value in rcode. Possible

causes of errors include

e The variable ID is invalid for the specified netCDF file.
e The specified netCDF ID does not refer to an open netCDF file.

ncvaring: C Interface

int ncvarinq(int cdfid, int varid, char* name, nc_type* datatype,

cdfid
varid

name

datatype

ndims

dim

natts

int* ndims, int dim[], int* natts);

netCDF 1D, returned from a previous call to ncopen or nccreate.
Variable 1D, returned from a previous call to ncvardef or ncvarid.

Returned variable name. The caller must allocate space for the returned name. The
maximum possible length, in characters, of a variable name is given by the predefined
constant MAX_NC_NAME. If the name parameter is given as ‘(char *) 0’, no name will

be returned so no space needs to be allocated.

Returned variable type, one of the set of predefined netCDF data types. The type of
this parameter, nc_type, is defined in the netCDI header file. The valid netCDF data
types are NC_BYTE, NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

Returned number of dimensions the variable was defined as using. For example, 2
specifies a matrix, 1 specifies a vector, and 0 means the variable is a scalar with no
dimensions.

Returned vector of ndims dimension IDs corresponding to the variable dimensions. The
caller must allocate enough space for a vector of at least ndims integers to be returned.
The maximum possible number of dimensions for a variable is given by the predefined
constant MAX_VAR_DINMS.

Returned number of variable attributes assigned to this variable.

Here is an example using ncvaring to find out about a variable named rh in an existing netCDF

70 netCDF User’s Guide

VARNAM Variable name for which ID is desired.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVID to find out the ID of a variable named rh in an existing netCDF

file named ‘foo.cdf’:

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE
INTEGER RHID ! variable ID

CDFID = NCOPN (’foo.cdf’, NCNOWRIT, RCODE)

RHID = NCVID (CDFID, ’rh’, RCODE)

Variables 69

7.2 Get a Variable ID from Its Name

The function ncvarid (or NCVID for FORTRAN) returns the ID of a netCDF variable, given its

name.

In case of an error, ncvarid returns -1; NCVID returns a nonzero value in rcode. Possible causes

of errors include

e The specified variable name is not a valid name for a variable in the specified netCDF file.

e The specified netCDF ID does not refer to an open netCDF file.

ncvarid: C Interface
int ncvarid(int cdfid, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

name Variable name for which ID is desired.

Here is an example using ncvarid to find out the ID of a variable named rh in an existing
netCDF file named ‘foo.cdf’

#include "netcdf.h"

int cdfid; /* netCDF ID x/
int rh_id; /* variable ID */

cdfid = ncopen("foo.cdf", NC_NOWRITE);

rh_id = ncvarid (cdfid, "rh");

NCVID: FORTRAN Interface

INTEGER FUNCTION NCVID(INTEGER CDFID,
+ CHARACTER* (%) VARNAM,
+ INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

68

INCLUDE °

INTEGER
INTEGER
INTEGER
INTEGER

netCDF User’s Guide

netcdf.inc’

CDFID, RCODE

LATDIM, LONDIM, TIMDIM ! dimension IDs
RHID ! variable ID
RHDIMS(3) ! variable shape

CDFID = NCCRE (’foo.cdf’, NC_CLOBBER, RCODE)

LATDIM
LONDIM
TIMDIM

RHDIMS(1)
RHDIMS(2)
RHDIMS(3)

! define dimensions
NCDDEF (CDFID, ’lat’, 5, RCODE)
NCDDEF (CDFID, ’lon’, 10, RCODE)
NCDDEF (CDFID, ’time’, NCUNLIM, RCODE)

! define variable

TIMDIM
= LATDIM
LONDIM

RHID = NCVDEF (CDFID, ’rh’, NCDOUBLE, 3, RHDIMS, RCODE)

Variables 67

#include "netcdf.h"

int cdfid; /* netCDF ID x/

int lat_dim, lon_dim, time_dim; /* dimension IDs */
int rh_id; /* variable ID */
int rh_dims[3]; /* variable shape */

cdfid = nccreate("foo.cdf", NC_CLOBBER);

/* define dimensions */
lat_dim = ncdimdef(cdfid, "lat", 5);
lon_dim = ncdimdef(cdfid, "lon", 10);
time_dim = ncdimdef(cdfid, "time", NC_UNLIMITED);

/* define variable */
rh_dims[0] = time_dim;
rh_dims[1] lat_dim;
rh_dims[2] lon_dim;
rh_id = ncvardef (cdfid, "rh'", NC_DOUBLE, 3, rh_dims);

NCVDEF: FORTRAN Interface

INTEGER FUNCTION NCVDEF (INTEGER CDFID, CHARACTER#*(*) VARNAM,

+ INTEGER VARTYP, INTEGER NVDIMS,
+ INTEGER VDIMS(*), INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

VARNAM Variable name. Must begin with an alphabetic character, which is followed by zero or

more alphanumeric characters including the underscore (_). Case is significant.

VARTYP One of the set of predefined netCDF data types. The valid netCDF data types are
NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

NVDIMS Number of dimensions for the variable. For example, 2 specifies a matrix, 1 specifies a
vector, and 0 means the variable is a scalar with no dimensions. Must not be negative
or greater than the predefined constant MAXVDIMS.

VDIMS Vector of NVDIMS dimension IDs corresponding to the variable dimensions. If the ID of

the unlimited dimension is included, it must be last.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVDEF to create a variable named rh of type long with three dimen-

sions, time, lat, and lon in a new netCDF file named ‘foo.cdf’:

66 netCDF User’s Guide

7.1 Create a Variable

The function ncvardef (or NCVDEF for FORTRAN) adds a new variable to an open netCDF
file in define mode. It returns a variable ID, given the netCDF ID, the variable name, the variable

type, the number of dimensions, and a list of the dimension IDs.

In case of an error, ncvardef returns -1; NCVDEF returns a nonzero value in rcode. Possible
causes of errors include

e The netCDVF file is not in define mode.
e The specified variable name is the name of another existing variable.
e The specified type is not a valid netCDF type.

e The specified number of dimensions is negative or more than the constant MAX_VAR_DIMS, the
maximum number of dimensions permitted for a netCDF variable.

e One or more of the dimension IDS in the list of dimensions is not a valid dimension ID for the

netCDF file.
e The specified netCDF ID does not refer to an open netCDF file.

ncvardef: C Interface

int ncvardef(int cdfid, char* name, nc_type datatype,
int ndims, int dim[]);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

name Variable name. Must begin with an alphabetic character, followed by zero or more
alphanumeric characters including the underscore (_). Case is significant.

datatype One of the set of predefined netCDF data types. The type of this parameter, nc_type,
is defined in the netCDF header file. The valid netCDF data types are NC_BYTE,
NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

ndims Number of dimensions for the variable. For example, 2 specifies a matrix, 1 specifies a
vector, and 0 means the variable is a scalar with no dimensions. Must not be negative

or greater than the predefined constant MAX_VAR_DIMS.

dim Vector of ndims dimension IDs corresponding to the variable dimensions. If the ID of

the unlimited dimension is included, it must be first.

Here is an example using ncvardef to create a variable named rh of type long with three
dimensions, time, lat, and lon in a new netCDF file named ‘foo.cdf’

Variables 65

7. Variables

Variables for a netCDVF file are defined when it is created, while the netCDF file is in define
mode. Additional variables may be added later by reentering define mode. A netCDF variable
has a name, a type, and a shape, which are specified when it is defined. A variable may also have
values, which are established later, in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The name
may be changed, but the type and shape of a variable cannot be changed. However, a variable
defined in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable is referred to by a small integer called a variable ID. Attributes may be
associated with a variable to specify such properties as units, special values, maximum and minimum
valid values, scaling factors, and offsets.

Operations supported on variables are

e Create a variable, given its name, data type, and shape.

e Get a variable ID from its name.

e (et a variable’s name, data type, shape, and number of attributes from its ID.
e Put a data value into a variable, given variable 1D, indices, and value.

e Put a hyperslab of values into a variable, given variable ID, corner indices, edge lengths, and
a block of values.

e Get a data value from a variable, given variable ID and indices.
e Get a hyperslab of values from a variable, given variable ID, corner indices, and edge lengths.

e Rename a variable.

64 netCDF User’s Guide

NCDREN: FORTRAN Interface

SUBROUTINE NCDREN (INTEGER CDFID, INTEGER DIMID,

+ CHARACTER*(*) DIMNAME, INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
DIMID Dimension ID, as returned from a previous call to NCDID or NCDDEF.
DIMNAM New name for the dimension.
RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDREN to rename the dimension "lat" to "latitude" in an existing
netCDF file named ‘foo.cdf’

INCLUDE ’netcdf.inc’
INTEGER CDFID, RCODE, LATID
CDFID = NCOPN(’foo.cdf’, NCWRITE, RCODE)

* put in define mode to rename dimension

CALL NCREDF(CDFID)

LATID = NCDID(CDFID, ’lat’, RCODE)

CALL NCDREN(CDFID, LATID, ’latitude’, RCODE)
* leave define mode

CALL NCENDF(CDFID)

Dimensions 63

6.4 Rename a Dimension

The function ncdimrename (or NCDREN for FORTRAN) renames an existing dimension in a
netCDF open for writing. If the new name is longer than the old name, the netCDF must be in

define mode. You cannot rename a dimension to have the same name as another dimension.

In case of an error, ncdimrename returns -1; NCDREN returns a nonzero value in rcode. Possible

causes of errors include

e The new name is the name of another dimension.
e The dimension ID is invalid for the specified netCDF file.
e The specified netCDF ID does not refer to an open netCDF file.

ncdimrename: C Interface

int ncdimrename(int cdfid, int dimid, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
dimid Dimension ID, as returned from a previous call to ncdimid or ncdimdef.
name New dimension name.

Here is an example using ncdimrename to rename the dimension lat to latitude in an existing
netCDF file named ‘foo.cdf’

#include '"netcdf.h"

int.gdfid, latid;

cdfia = ncopen("foo.cdf", NC_WRITE); /* open for writing */
ncré&ef(cdfid); /* put in define mode to rename dimension */
latid = ncdimid(cdfid, "lat");

ncdimrename(cdfid, latid, "latitude");
ncendef(cdfid); /* leave define mode */

62

netCDF User’s Guide

INCLUDE ’netcdf.inc’

INTEGER CDFID, RCODE, LATID, LATSIZ

INTEGER NDIMS, NVARS, NGATTS, RECID, NRECS
31 in following statement is parameter MAXNCNAM

CHARACTER*31 LATNAM, RECNAM

CDFID

NCOPN(’foo.cdf’, NCNOWRIT, RCODE)

LATID = NCDID(CDFID, ’lat’, RCODE)
get lat name and size, (even though we already know name)
CALL NCDINQ(CDFID, LATID, LATNAM, LATSIZ, RCODE)
get ID of record dimension (among other things)
CALL NCINQ(CDFID, NDIMS, NVARS, NGATTS, RECID)
get record dimension name and current size
CALL NCDINQ(CDFID, RECID, RECNAME, NRECS)

Dimensions

#incl
int ¢
char
int r
cdfid
latid
/* ge

61
ude "netcdf.h"
dfid, latid, latsize, ndims, nvars, ngatts, recid;

recname [MAX_NC_NAME] ;
ecs;

= ncopen("foo.cdf", NC_NOWRITE); /* open for reading */

= ncdimid(cdfid, "lat");
t lat size, but don’t get name, since we already know it */

ncdiming(cdfid, latid, (char *) 0, &latsize);

/* ge
ncing
/* ge

t ID of record dimension (among other things) */
uire(cdfid, &ndims, &nvars, &ngatts, &recid);
t record dimension name and current size */

ncdiming(cdfid, recid, recname, &recs);

NCDIN

CDFID
DIMID

DIMNAM

DIMSIZ

RCODE

Q: FORTRAN Interface

SUBROUTINE NCDINQ (INTEGER CDFID, INTEGER DIMID,
+ CHARACTER* (*) DIMNAM, INTEGER DIMSIZ,
+ INTEGER RCODE)

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
Dimension ID, as returned from a previous call to NCDID or NCDDEF.

Returned dimension name. The caller must allocate space for the returned name. The
maximum possible length, in characters, of a dimension name is given by the predefined
constant MAXNCNAM.

Returned size of dimension. For the unlimited dimension, this is the current maximum
value used for writing any variables with this dimension, that is the maximum record
number.

Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDINQ to determine the size of a dimension named lat, and the

name and current maximum size of the unlimited (or record) dimension for an existing netCDF file

named ‘foo.cdf’:

60 netCDF User’s Guide

6.3 Inquire about a Dimension

The function ncdiming (or NCDINQ for FORTRAN) returns the name and size of a dimension,
given its ID. The size for the unlimited dimension, if any, is the maximum value used so far in

writing data for that dimension (which is the same as the current maximum record number).

In case of an error, ncdiming returns -1; NCDINQ returns a nonzero value in rcode. Possible

causes of errors include

e The dimension ID is invalid for the specified netCDF file.

e The specified netCDF ID does not refer to an open netCDF file.

ncdiming: C Interface

int ncdiming(int cdfid, int dimid, char* name, int* size);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
dimid Dimension ID, as returned from a previous call to ncdimid or ncdimdef.
name Returned dimension name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a dimension name is given by the predefined
constant MAX_NC_NAME. If the name parameter is given as ‘(char *) 0’, no name will

be returned so no space needs to be allocated.

size Returned size of dimension. For the unlimited dimension, this is the current maximum
value used for writing any variables with this dimension, that is the maximum record

number.

Here is an example using ncdiming to determine the size of a dimension named lat, and the
name and current maximum size of the unlimited (or record) dimension for an existing netCDF file

named ‘foo.cdf’:

Dimensions 59

NCDID: FORTRAN Interface

INTEGER FUNCTION NCDID (INTEGER CDFID,

+ CHARACTER* (*) DIMNAME,
+ INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

DIMNAME Dimension name, a character string beginning with a letter and followed by any se-
quence of letters, digits, or underscore (_) characters. Case is significant in dimension

names.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDID to determine the dimension ID of a dimension named lat,

assumed to have been defined previously in an existing netCDF file named ‘foo.cdf”:

INCLUDE ’netcdf.inc’
INTEGER CDFID, RCODE, LATID

CDFID = NCOPN(’foo.cdf’, NCNOWRIT, RCODE)

LATID = NCDID(CDFID, ’lat’, RCODE)

58 netCDF User’s Guide

6.2 Get a Dimension ID from Its Name

The function ncdimid (or NCDID for FORTRAN) returns the ID of a netCDF dimension, given
the name of the dimension. If ndims is the number of dimensions defined for a netCDF file, each
dimension has an ID between 0 and ndims-1 (or 1 and ndims for FORTRAN).

In case of an error, ncdimid returns -1; NCDID returns a nonzero value in rcode. Possible causes
of errors include

e The name that was specified is not the name of any currently defined dimension in the netCDF

file.
e The specified netCDF ID does not refer to an open netCDF file.

ncdimid: C Interface
int ncdimid(int cdfid, char* name);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

name Dimension name, a character string beginning with a letter and followed by any se-
quence of letters, digits, or underscore (_) characters. Case is significant in dimension

names.

Here is an example using ncdimid to determine the dimension ID of a dimension named lat,

assumed to have been defined previously in an existing netCDF file named ‘foo.cdf”:

#include "netcdf.h"

int cdfid, latid;

cdfid = ncopen("foo.cdf", NC_NOWRITE); /* open for reading */

latid = ncdimid(cdfid, "lat");

Dimensions 57
#include "netcdf.h"
int cdfid, latid, recid;

cdfid = nccreate("foo.cdf", NC_NOCLOBBER);

ncdimdef (cdfid, "lat", 18);
ncdimdef (cdfid, "rec'", NC_UNLIMITED);

latid
recid

NCDDEF: FORTRAN Interface

SUBROUTINE NCDDEF (INTEGER CDFID,

+ CHARACTER* (*) DIMNAM,
+ INTEGER DIMSIZ,
+ INTEGER RCODE)
CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.
DIMNAM Dimension name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (_). Case is significant.

DIMSIZ Size of dimension, that is, number of values for this dimension as an index to variables
that use it. This should be either a positive integer or the predefined constant NCUNLIM.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDDEF to create a dimension named lat of size 18 and a record
dimension named rec in a new netCDF file named ‘foo.cdf’:
INCLUDE ’netcdf.inc’
INTEGER CDFID, RCODE, LATID, RECID

CDFID

= NCCRE(’foo.cdf’, NCNOCLOB, RCODE)
LATID = NCDDEF(CDFID, ’lat’, 18, RCODE)
RECID = NCDDEF(CDFID, ’rec’, NCUNLIM, RCODE)

56 netCDF User’s Guide

6.1 Create a Dimension

The function ncdimdef (or NCDDEF for FORTRAN) adds a new dimension to an open netCDF
file in define mode. It returns a dimension 1D, given the netCDF ID, the dimension name, and the

dimension size. At most one unlimited size dimension, called the record dimension, may be defined
for each netCDF file.

In case of an error, ncdimdef returns -1; NCDDEF returns a nonzero value in rcode. Possible

causes of errors include

e The netCDF file is not in definition mode.
e The specified dimension name is the name of another existing dimension.
e The specified size is not greater than zero.

e The specified size is unlimited, but there is already an unlimited size dimension defined for

this netCDF file.

e The specified netCDF ID does not refer to an open netCDF file.

ncdimdef: C Interface

int ncdimdef (int cdfid, char* name, int size);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

name Dimension name. Must begin with an alphabetic character, followed by zero or more
alphanumeric characters including the underscore (_). Case is significant.

size Size of dimension, that is, number of values for this dimension as an index to vari-
ables that use it. This should be either a positive integer or the predefined constant
NC_UNLIMITED.

Here is an example using ncdimdef to create a dimension named lat of size 18 and a record
dimension named rec in a new netCDF file named ‘foo.cdf”:

Dimensions 55

6. Dimensions

Dimensions for a netCDF file are defined when it is created, while the netCDF file is in define
mode. Additional dimensions may be added later by reentering define mode. A netCDF dimension
has a name and a size. At most one dimension in a netCDF can have the NC_UNLIMITED size, which
means a variable using this dimension can grow to any length (like a record number in a file).

There is a suggested limit (currently 32) to the number of dimensions that can be defined in
a single netCDF file. The limit is the value of the predefined macro MAX_NC_DIMS (MAXNCDIM
for FORTRAN). The purpose of the limit is to make writing generic applications simpler, so that
generic applications need only provide an array of MAX_NC_DIMS dimensions to handle any netCDF
file. The implementation of the netCDF library does not enforce this advisory maximium, so it
is possible to use more dimensions if necessary; just don’t expect generic applications or netCDF
utilities to be able to handle the resulting netCDF files.

Ordinarily, the name and size of a dimension are fixed when the dimension is first defined. The
name may be changed later, but the size of a dimension cannot be changed without copying the
netCDF to a new netCDF with a redefined dimension size.

Operations supported on dimensions are

e create a dimension, given its name and size
e get a dimension ID from its name
e get a dimension’s name and size from its 1D

e rename a dimension

54 netCDF User’s Guide

NCABOR: FORTRAN Interface
SUBROUTINE NCABOR(INTEGER CDFID, INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCABOR to back out of redefinitions of a file named ‘foo.cdf”:

INCLUDE ’netcdf.inc’

INTE&ER CDFID, RCODE, LATID

CDFib = NCOPN(’foo.cdf’, NCWRITE, RCODE)
CALLHNCREDF(CDFID, RCODE)

LATib = NCDDEF (CDFID, °’LAT’, 18, RCODE)

IF (RCODE .EQ. -1) THEN ! dimension definition failed

CALL NCABOR(CDFID, RCODE) ! abort redefinitions
ENDIF

netCDF Operations 53

5.9 Back Out of Recent Definitions

The function ncabort (or NCABOR for FORTRAN), if not in define mode, closes the netCDF file.
If the file is being created and is still in define mode, the file is deleted. If define mode was entered
by a call to ncredef (or NCREDF), the netCDF file is restored to its state before definition mode
was entered and the file is closed. The main reason for calling ncabort (or NCABOR) is to restore
the netCDF to a known consistent state in case anything goes wrong during the definition of new

dimensions, variables, or attributes.

This function is called automatically if ncclose (or NCCLOS) is called from define mode and the

call to leave define mode before closing fails.

In case of an error, ncabort returns -1; NCABOR returns a nonzero value in rcode. Possible

causes of errors include

e When called from define mode while creating a netCDF, deletion of the file failed.
e The specified netCDF ID does not refer to an open netCDF file.

ncabort: C Interface
int ncabort(int cdfid);
cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

Here is an example using ncabort to back out of redefinitions of a file named ‘foo.cdf”:

#include "netcdf.h"

int.édfid;

cdfia = ncopen("foo.cdf", NC_WRITE); /* open for writing */
ncré&ef(cdfid); /* enter define mode */

if (ncdimdef(cdfid, "lat", 18) == -1)
ncabort(cdfid); /* define failed, abort */

52 netCDF User’s Guide

NCSNC: FORTRAN Interface
SUBROUTINE NCSNC(INTEGER CDFID, INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCSNC to synchronize the disk writes of a netCDF file named ‘foo.cdf”:

INCLUDE ’netcdf.inc’

INTE&ER CDFID, RCODE

CDFib = NCOPN(’foo.cdf’, NCNOWRIT, RCODE)
* write dééa or change attributes

CALL NCSNC(CDFID, RCODE)

netCDF Operations 51

5.8 Synchronize an Open netCDF File to Disk

The function ncsync (or NCSNC for FORTRAN) makes sure that the disk copy of a netCDF file
open for writing is current. The netCDF file must be in data mode. A netCDF file in define mode
is synchronized to disk only when ncendef (or NCENDF) is called. It can be expensive in computer
resources to always synchronize to disk after every write of variable data or change of an attribute
value. There are two reasons you might want to synchronize after writes:

e to minimize data loss in case of abnormal termination, or

e to make data available to other processes for reading immediately after it is written.

Data is automatically synchronized to disk when a netCDF file is closed, or whenever you leave
define mode.

In case of an error, ncsync returns -1; NCSNC returns a nonzero value in rcode. Possible causes
of errors include

e The netCDF file is in define mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncsync: C Interface
int ncsync(int cdfid);
cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

Here is an example using ncsync to synchronize the disk writes of a netCDF file named
‘foo.cdf”
#include '"netcdf.h"
int.édfid;
cdfia = ncopen("foo.cdf", NC_WRITE); /* open for writing */
/* write data or change attributes */

ncsync(cdfid); /* synchronize to disk */

50

netCDF User’s Guide

NCINQ: FORTRAN Interface

CDFID
NDIMS
NVARS
NGATTS
RECDIM

RCODE

SUBROUTINE NCINQ(INTEGER CDFID, INTEGER NDIMS, INTEGER NVARS,
* INTEGER NGATTS, INTEGER RECDIM, INTEGER RCODE)

netCDF 1D, returned from a previous call to NCOPN or NCCRE.
Returned number of dimensions defined for this netCDF file.
Returned number of variables defined for this netCDF file.
Returned number of global attributes defined for this netCDF file.

Returned ID of the unlimited dimension, if there is one for this netCDF file. If no
unlimited size dimension has been defined, -1 is returned for the value of RECDIM.

Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCINQ to find out about a netCDVF file named ‘foo.cdf’:

INCLUDE ’netcdf.inc’
INTEGER CDFID, NDIMS, NVARS, NATTS, RECDIM, RCODE
CDFID = NCOPN(’foo.cdf’, NCNOWRIT, RCODE)

CALL NCINQ(CDFID, NDIMS, NVARS, NATTS, RECDIM, RCODE)

netCDF Operations 49

5.7 Inquire about an Open netCDF File

The function ncinquire (NCINQ for FORTRAN) returns information about an open netCDF
file, given its netCDF ID. It can be called from either define mode or data mode. It returns values
for the number of dimensions, the number of variables, the number of global attributes, and the
variable ID of the dimension defined with unlimited size, if any.

In case of an error, ncinquire returns -1; NCINQ returns a nonzero value in rcode. Possible
causes of errors include

e The specified netCDF ID does not refer to an open netCDF file.

ncinquire: C Interface

int ncinquire(int cdfid, int* ndims, int* nvars, int* ngatts,
int* recdim);

cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.
ndims Returned number of dimensions defined for this netCDF file.
nvars Returned number of variables defined for this netCDF file.

ngatts Returned number of global attributes defined for this netCDVF file.

recdim Returned ID of the unlimited dimension, if there is one for this netCDF file. If no
unlimited size dimension has been defined, -1 is returned for the value of recdim.

Here is an example using ncinquire to find out about a netCDF file named ‘foo.cdf”:

#include "netcdf.h"
int cdfid, ndims, nvars, ngatts, recdim;
cdfid = ncopen("foo.cdf", NC_NOWRITE);

ncinquire(cdfid, &ndims, &nvars, &ngatts, &recdim);

48 netCDF User’s Guide

NCCLOS: FORTRAN Interface
SUBROUTINE NCCLOS(INTEGER CDFID, INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCCLOS to finish the definitions of a new netCDF file named ‘foo.cdf’
and release its netCDF ID:
INCLUDE ’netcdf.inc’
INTE&ER CDFID, RCODE
CDFib = NCCRE(’foo.cdf’, NCNOCLOB, RCODE)
! create dimensions, variables, attributes

CALL NCCLOS(CDFID, RCODE)

netCDF Operations 47

5.6 Close an Open netCDF File

The function ncclose (or NCCLOS for FORTRAN) closes an open netCDF file. If the file is
in define mode, ncendef (or NCENDF) will be called before closing. (In this case, if ncendef (or
NCENDF) returns an error, ncabort (or NCABOR) will automatically be called to restore the file to
the consistent state before define mode was last entered.) After an open netCDF file is closed, its
netCDF ID will be reassigned to the next netCDVF file that is opened or created.

In case of an error, ncclose returns -1; NCCLOS returns a nonzero value in rcode. Possible

causes of errors include

e The netCDF was in define mode and the automatic call made to ncendef (or NCENDF) failed.
e The specified netCDF ID does not refer to an open netCDF file.

ncclose: C Interface
int ncclose(int cdfid);
cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

Here is an example using ncclose to finish the definitions of a new netCDF file named ‘foo.cdf’
and release its netCDF ID:
#include "netcdf.h"
int. .c.dfid;
cdfia = nccreate("foo.cdf", NC_NOCLOBBER);
/* create dimensions, variables, attributes */

ncclose(cdfid); /* close netCDF file */

46 netCDF User’s Guide

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCENDF to finish the definitions of a new netCDF file named ‘foo.cdf’
and put it into data mode:

INCLUDE ’netcdf.inc’
INTE&ER CDFID
CDFib = NCCRE(’foo.cdf’, NCNOCLOB, RCODE)
! create dimensions, variables, attributes

CALL NCENDF(CDFID, RCODE)

netCDF Operations 45

5.5 Leave Define Mode

The function ncendef (or NCENDF for FORTRAN) takes an open netCDF file out of define mode.
The changes made to the netCDF file while it was in define mode are checked and committed to
disk if no problems occurred. The netCDF file is then placed in data mode, so variable data can
be read or written.

In case of an error, ncendef returns -1; NCENDF returns a nonzero value in rcode. Possible
causes of errors include

e The specified netCDF file is not in define mode.
e The specified netCDF ID does not refer to an open netCDF file.

ncendef: C Interface
int ncendef(int cdfid);
cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

Here is an example using ncendef to finish the definitions of a new netCDF file named ‘foo.cdf’
and put it into data mode:

#include "netcdf.h"
int.édfid;
cdfia = nccreate("foo.cdf", NC_NOCLOBBER);
/* create dimensions, variables, attributes */

ncendef (cdfid); /* leave define mode */

NCENDF: FORTRAN Interface
SUBROUTINE NCENDF(INTEGER CDFID, INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

44 netCDF User’s Guide

Here is an example of using NCREDF to open an existing netCDF file named ‘foo.cdf’ and put

it into define mode:
INCLUDE ’netcdf.inc’

INTEGER CDFID

CDFID = NCOPN(’foo.cdf’, NCNOWRIT, RCODE)

CALL NCREDF(CDFID, RCODE)

netCDF Operations 43

5.4 Put Open netCDF File into Define Mode

The function ncredef (or NCREDF for FORTRAN) puts an open netCDF file into define mode,
so dimensions, variables, and attributes can be added or renamed and attributes can be deleted.

In case of an error, ncredef returns -1; NCREDF returns a nonzero value in rcode. Possible
causes of errors include

e The specified netCDF file is already in define mode.
e The specified netCDF file was opened for read-only.
e The specified netCDF ID does not refer to an open netCDF file.

ncredef: C Interface
int ncredef(int cdfid);
cdfid netCDF 1D, returned from a previous call to ncopen or nccreate.

Here is an example using ncredef to open an existing netCDF file named ‘foo.cdf’ and put it
into define mode:

#include "netcdf.h"

int cdfid;

cdfid = ncopen("foo.cdf", NC_NOWRITE); /* open file */
ncredef (cdfid); /* put in define mode */

NCREDF: FORTRAN Interface

SUBROUTINE NCREDF(INTEGER CDFID, INTEGER RCODE)

CDFID netCDF 1D, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

42 netCDF User’s Guide

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example of using NCOPN to open an existing netCDVF file named ‘foo.cdf’ for reading;:

INCLUDE ’netcdf.inc’
INTEGER CDFID

CDFID = NCOPN(’foo.cdf’, NCNOWRIT, RCODE)

netCDF Operations 41

5.3 Open a netCDF File for Access
The function ncopen (or NCOPN for FORTRAN) opens an existing netCDF file for access.

In case of an error, ncopen returns -1; NCOPN returns a nonzero value in rcode. Possible causes
of errors include

e The specified netCDF file does not exist.
e The mode specified is something other than NC_WRITE or NC_NOWRITE.

ncopen: C Interface
int ncopen(char* path,int mode);
path Absolute or relative file name for netCDF file to be opened.
mode Either NC_WRITE, to open the file for writing, or NC_NOWRITE, to open the file read-only.

“Writing” means any kind of change to the file, including appending or changing data,
adding or renaming dimensions, variables, and attributes, or deleting attributes.

Here is an example using ncopen to open an existing netCDF file named ‘foo.cdf’ for reading;:

#include "netcdf.h"
int cdfid;

cdfid = ncopen("foo.cdf", NC_NOWRITE);

NCOPN: FORTRAN Interface

INTEGER FUNCTION NCOPN(CHARACTER*(*) PATH,

+ INTEGER RWMODE,
+ INTEGER RCODE)
PATH Absolute or relative file name for netCDF file to be opened.

RWMODE Either NCWRITE, to open the file for writing, or NCNOWRIT, to open the file read-only.
“Writing” means any kind of change to the file, including appending or changing data,
adding or renaming dimensions, variables, and attributes, or deleting attributes.

40 netCDF User’s Guide

NCCRE: FORTRAN Interface

INTEGER FUNCTION NCCRE (CHARACTER#*(*) PATH, INTEGER CMODE,
INTEGER RCODE)

PATH The file name of the new netCDF file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current
directory).

CMODE Should be specified as either NCCLOB or NCNOCLOB. These constants are defined in the

include file ‘netcdf .inc’. NCCLOB means that even if the file already exists, you want to
create a new file with the same name, erasing the old file’s contents. NCNOCLOB means
you want to create a new netCDF file only if the given file name does not refer to a file

that already exists.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example of the creation of a netCDVF file named ‘foo.cdf’, assuming we want the file

to be created in the current directory only if it does not already exist:

INCLUDE ’netcdf.inc’
INTEGER CDFID

CDFID = NCCRE(’foo.cdf’, NCNOCLOB, RCODE)

netCDF Operations 39

5.2 Create a netCDF file

The function nccreate (or NCCRE for FORTRAN) creates a new netCDF file, returning a
netCDF ID that can subsequently be used to refer to the netCDF file. The new netCDF file

is placed in define mode.

In case of an error, nccreate returns -1; NCCRE returns a nonzero value in rcode. Possible

causes of errors include

e Passing a file name that includes a directory that does not exist.
e Specifying a file name of a file that exists and also specifying NC_NOCLOBBER (or NCNOCLOB).

o Attempting to create a netCDF file in a directory where you don’t have permission to create

files.

nccreate: C Interface

int nccreate (char* path, int cmode);

path The file name of the new netCDF file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current
directory).

cmode Should be specified as either NC_CLOBBER or NC_NOCLOBBER. These constants are defined

in the include file ‘netcdf.h’. NC_CLOBBER means that even if the file already exists,
you want to create a new file with the same name, erasing the old file’'s contents.
NC_NOCLOBBER means you want to create a new netCDF file only if the given file name
does not refer to a file that already exists.

Here is an example of the creation of a netCDF file named ‘foo.cdf’; we want the file to be

created in the current directory only if it does not already exist:
#include "netcdf.h"
int cdfid;

cdfid = nccreate("foo.cdf", NC_NOCLOBBER);

38 netCDF User’s Guide

a description of each formal parameter in the C interface

e an example of a C program fragment calling the netCDF function and perhaps other netCDF
functions to do something useful,

e a FORTRAN function prototype that presents the type and order of the formal parameters to
the FORTRAN function or functions that provide the same functionality as the C function,

e a description of each formal parameter in the FORTRAN interface, and

e an example of a FORTRAN program fragment that duplicates the function of the example C
fragment.

The C function prototypes specify the order and type of each formal parameter and conform
to the ANSI C standard. FORTRAN does not have function prototypes, but a similar syntax is
used to concisely present the order and types of FORTRAN formal parameters. In the few cases
in which a single C function corresponds to two FORTRAN functions, the FORTRAN functions
prototypes are presented together.

The FORTRAN examples use two nonstandard notations: INCLUDE statements and in-line com-
ments. In each case, we use the VMS FORTRAN notation, as in the following example:

INCLUDE ’netcdf.inc’
INTEGER CDFID ! this is an in-line comment

FORTRAN examples (and the FORTRAN interface) abide by the six-character limitation on
the length of FORTRAN names, except that parameters names may be up to eight characters long.

netCDF Operations 37

5. netCDF Operations

This chapter presents the interfaces of the netCDF routines that deal with a netCDF file as a
whole.

A netCDF file that has not yet been opened can only be referred to by its file name. Once a
netCDF file is opened, it is referred to by an ID, which is a small nonnegative integer returned
when you create or open the file. A netCDF ID is a file handle, much like a file descriptor in C
or a logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open
netCDFs are distinct. A single netCDF file may be opened multiple times and will then have
multiple distinct netCDF IDs; however at most one of the open instances of a single netCDF file
should permit writing. When an open netCDF file is closed, its ID no longer refers to it, and that
ID may be subsequently reassigned to refer to a different netCDF that is opened later.

The operations supported on a netCDF as a single object are

e Create, given file path and whether to overwrite or not.

e Open for access, given file path and read or write intent.

e Put into define mode, to add dimensions, variables, or attributes.
e Take out of define mode, checking consistency of additions.

e Close, writing to disk if required.

e Get number of dimensions, number of variables, number of global attributes, and ID of the

unlimited dimension if any.

e Synchronize to disk to make sure it is current.

After a summary of conventions used in describing the netCDF C and FORTRAN interfaces, the

rest of this chapter presents the interfaces for these operations.

5.1 netCDF Library Interface Descriptions
Each interface description for a particular netCDF function in this and later chapters contains

e a description of the purpose of the function,
e a list of possible error conditions,

e a C function prototype that presents the type and order of the formal parameters to the

function,

36 netCDF User’s Guide

If you want neither error messages nor fatal errors, turn off both flags with:

ncopts = 0;
In either case, you should check the return value after each call to a netCDF function. The integer
-1 is returned whenever an error occurs and NC_FATAL is off, so you can detect error returns and
handle the errors appropriately. Another externally-defined integer, ncerr, contains a netCDF-

specific error code that can be used after an error has occurred to determine what the nature of the
error was. The names and descriptions of netCDVF error codes are included in the file ‘netcdf .h’.

In the FORTRAN interface, the error options described above can be accessed by using the rou-
tines NCPOPT and NCGOPT. The default error- handling behavior is equivalent to the statement

CALL NCPOPT(NCVERBOS+NCFATAL)

where the values of NCVERBOS and NCFATAL are pre-defined constants from the FORTRAN
include file ‘netcdf.inc’. If you want error messages, but do not wish errors to be fatal, turn off
the fatal error flag with:

CALL NCPOPT(NCVERBOS)

If you want neither error messages nor fatal errors, turn off both flags with:
CALL NCPOPT(0)

To get the current value of the error options, use
CALL NCGOPT(NCOPTS)

In either case, the integer return code (the last parameter in all of the FORTRAN subroutines
and functions) contains the non-zero netCDF-specific error number that can be used to determine
the nature of the error. Names and descriptions of netCDF error codes are included in the file

‘netcdf.inc’.

Use of the netCDF Library 35

In define mode, call ncdimdef (or NCDDEF) to define new dimensions, ncvardef (or NCVDEF) to
define new variables (using the new dimensions), and ncattput (or NCAPT or NCAPTC) to assign new
attributes to variables or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for consistency
and committing the changes to disk, by calling ncendef (or NCENDF). If you do not wish to reenter
data mode, just call ncclose (or NCCLOS), which will have the effect of first calling ncendef (or
NCENDF).

Until the ncendef (or NCENDF) call, you may back out of all the redefinitions made in define
mode and restore the previous state of the netCDF by calling ncabort (or NCABOR). You may
also use the ncabort call to restore the netCDF to a consistent state if the call to ncendef (or
NCENDF) fails. If you have called ncclose (or NCCLOS) from definition mode and the implied call to
ncendef (or NCENDF) fails, ncabort (or NCABOR) will automatically be called to close the netCDF

in its previous consistent state (before you entered define mode).

4.5 Error Handling

By default all netCDF library routines print an error message and exit when an error has
occurred. If this error behavior is acceptable, you never need to check error returns, since any
condition that would result in an error will print an explanatory message and exit. All the examples
in this document assume this default error-handling behavior, so the examples include no checking
of error returns.

In the C interface, errors may be handled more flexibly by setting the external integer ncopts,
declared in the file ‘netcdf.h’. Two aspects of the error-handling behavior can be modified inde-
pendently: the suppression of error messages, and the fatality of errors. The default behavior is

specified by the assignment
ncopts = NC_VERBOSE | NC_FATAL;
where NC_VERBOSE and NC_FATAL are predefined constants from the include file ‘netcdf.h’.
If you want error messages but do not wish errors to be fatal, turn off the fatal error flag with:

ncopts = NC_VERBOSE;

34

netCDF User’s Guide

4.4 Adding New Dimensions, Variables, Attributes

An existing netCDF file can be extensively altered. New dimensions, variables, and attributes

can be added or existing ones renamed, and existing attributes can be deleted. Existing dimensions,

variables, and attributes can be renamed. The following code template lists a typical sequence of

calls to add new netCDF components to an existing file:

ncopen
ncgédef
nc&imdef
nc;érdef
ncéétput
ncendéf
nc?érput

ncclose

/%
/%
/%
/%
/%
/%
/%
/%

open existing netCDF x/

put it into define mode */

define additional dimensions (if any) */

define additional variables (if any) */

define additional attributes (if any) */

check all definitions, leave define mode */

provide values for new variables */

save netCDF file */

In FORTRAN, the corresponding sequence looks like this:

CALL NCOPN
CALL NCREDF
CALL NCDDEF

CALL NCVDEF

CALL NCAPT or NCAPTC !

CALL NCENDF

CALL NCVPT or NCVPTC

CALL NCCLOS

open existing netCDF

put it into define mode

define additional dimensions (if any)
define additional variables (if any)
define additional attributes (if any)
check all definitions, leave define mode
provide values for new variables

save netCDF file

A netCDF file is first opened by the ncopen (or NCOPN) call. This call puts you in data mode,
which means existing data values can be accessed and changed, existing attributes can be changed

(solong as they do not grow), but nothing can be added. To add new netCDF dimensions, variables,

or attributes you must leave data mode and enter define mode, by calling ncredef (or NCREDF).

Use of the netCDF Library 33

CALL NCOPN ! open existing netCDF
CALi NCINQ ! find out what is in it
CALi NCDINQ ! get dimension names, sizes
CALi NCVINQ ! get variable names, types, shapes
CALi NCANAM ! get attribute names
CALi NCAINQ ! get attribute values

CALL NCAGT or NCAGIC ! get attribute values
CALL NCVGT or NCVGTC ! get values of variables

CALL NCCLOS ! close netCDF

As in the previous example, a single call opens the existing netCDVF file, returning a netCDF
ID. This netCDF ID is given to the ncinquire (or NCINQ) routine, which returns the number of
dimensions, the number of variables, the number of global attributes, and the ID of the unlimited

dimension, if there is one.

Dimension IDs are assigned by using consecutive integers (beginning at 0in C, 1 in FORTRAN).
Also dimensions, once created, cannot be deleted. Therefore, knowing the number of dimension
IDs in a netCDF means knowing all the dimension IDs: they are the integers 0, 1, 2, ..., (or 1, 2,
3, ...in FORTRAN). For each dimension ID, a call to the inquire function ncdiming (or NCDINQ)
returns the dimension name and size.

Like dimension IDs, variable IDs are also 0, 1,2, ..., (or 1,2, 3, ... in FORTRAN). These can
be used in ncvaring (or NCVINQ) calls to find out the names, types, shapes, and the number of

attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls to ncattname (or NCANAM)
return the name for each attribute given the netCDF 1D, variable ID, and attribute number. Armed
with the attribute name, a call to ncatting (or NCAINQ) returns its type and length. Given the
type and length, the generic application can allocate enough space to hold the attribute values.
Then a call to ncattget (or NCAGT or NCAGTC) returns the attribute values.

Once the names, 1Ds, types, shapes, and lengths of all netCDF components are known, data
values can be accessed by calling ncvarget1 (or NCVGT1 or NCVG1C) for single values, or ncvarget
(or NCVGT or NCVGTC) for aggregates of values using hyperslab access.

32 netCDF User’s Guide

Next, a call to ncopen (or NCOPN) for each dimension of interest gets the dimension ID from the
dimension name. Dimension IDs, like netCDF IDs, are small integers used to refer to dimensions
in subsequent calls. Similarly, each required variable ID is determined from its name by a call to
ncvarid (or NCVID). Once variable IDs are known, variable attribute values can be retrieved using
the netCDF ID, the variable ID, and the desired attribute name as input to ncattget (or NCAGT or
NCAGTC) for each desired attribute. Variable data values can be directly accessed from the netCDF
file with ncvarget1 (or NCVGT1 or NCVG1C) for single values, or ncvarget (or NCVGT or NCVGTC) for
hyperslabs of values. To minimize the number of disk accesses, you should remember that the last
dimension in C (first dimension in FORTRAN) varies fastest when using hyperslab access.

Finally, the netCDF file can be closed with ncclose (or NCCLOS) when you are finished with it
to free system resources. There is no harm in not closing a file open only for reading.

4.3 Reading a netCDF File with Unknown Names

If you want to write generic software (i.e., a program that transposes specified variables by
interchanging specified dimensions) you should make no assumptions about the dimension and
variable names that are not specified. In such cases, you must find out about all the dimensions,
variables, and attributes in a netCDF file by calling the inquire functions. Four inquire functions
get information about a whole netCDF file, a dimension, a variable, or an attribute. The following
template illustrates how they are used:

ncopen /* open existing netCDF */

nc.i.ﬁquire /* find out what is in it */
nca.i.minq /* get dimension names, sizes */
nc;r.eirinq /* get variable names, types, shapes */

nc.a.t.tname /* get attribute names */

nc.a.t.tinq /* get attribute types and lengths */

nc.a.t.tget /* get attribute values */
ncvarget.“ /* get values of variables */

ncclose /* close netCDF */

In FORTRAN, the corresponding sequence looks like this:

Use of the netCDF Library 31

4.2 Reading a netCDF File with Known Names

If you know the names of the dimensions, variables, and attributes in a netCDF file, you can
write calls to read data from the file; you don’t need to include the “inquire” calls that determine
what the dimensions, variables, and attributes are. If you employ such knowledge about particular
netCDF files, the program you write will lack generality. It will only work with files that have the
agssumed names and structure, so you will be losing some of the advantages of using the netCDF
interface. However, you may be writing software that expects the user or some other program to
supply variable or dimension names, perhaps as subroutine or command line arguments. In that
case, the resulting program could be quite general.

When you know the names of some variables of interest and their dimensions, the order of
typical C calls to read data from those variables in a netCDF file is:

ncopen /* open existing netCDF */

ncaimid /* get dimension IDs to use in accessing data */
ncﬁérid /* get variable IDs */

ncéétget /* get attribute values, if needed */

ncﬁérget /* get values of variables */

ncéiose /* close netCDF */

In FORTRAN, the corresponding sequence looks like this:

CALL NCOPN ! open existing netCDF

CALi NCDID ! get dimension IDs to use in accessing data
CALi NCVID ! get variable IDs

CALi NCAGT or NCAGTC ! get attribute values, if needed

CALi NCVGT or NCVGTC ! get values of variables

CALi NCCLOS ! close netCDF

First, a single call opens the netCDF file, given the file name, and returns a netCDF 1D that is
used to refer to the netCDF in all subsequent calls.

30 netCDF User’s Guide

CALL NCAPT or NCAPTC ! attribute put: assign attribute values

CALL NCENDF ! end definitions: leave define mode

CALL NCVPT or NCVPTC ! variable put: provide values for variables
CALL NCAPT or NCAPTC ! attribute put: change attribute values
CALL NCCLOS ! close: save new netCDF file

The FORTRAN interface provides two subroutines for defining attributes and providing values
for variables, depending on whether a numeric or character string value is used. The FORTRAN

template indicates that either of these subroutines could be called.

Only one call is needed to begin creating a netCDF file, at which point you will be in the first
of two netCDF modes. When accessing a netCDF, you are either in define mode or data mode.
In define mode, you can create dimensions, variables, and new attributes, but you cannot read or
write variable data. In data mode, you can access data and change existing attributes, but you are
not permitted to create new dimensions, variables, or attributes.

One call to ncdimdef (or NCDDEF) is needed for each dimension created. Similarly, one call to
ncvardef (or NCVDEF) is needed for each variable creation, and one call to ncattput (or NCAPT or
NCAPTC) is needed for each attribute defined and assigned a value. The only way to leave define
mode and enter data mode is by a call to ncendef (or NCENDF).

Once in data mode, you can add new data to variables, change old values, and change values
of existing attributes (so long as the attribute changes do not require more storage space for the
attribute). Single values are written to a variable with ncvarput1 (or NCVPT1 or NCVPTC1); while
arbitrary hyperslabs of data are written using ncvarput (or NCVPT or NCVPTC) instead.

Finally, you should explicitly close all open netCDF files on which you are writing by calling
ncclose (or NCCLOS) before the program exits. If a program terminates abnormally with netCDF
files open for writing, you may lose one or more records of the most recently written record variable
data as well as any attribute changes since the last call to ncsync (or NCSNC). It is possible to
reduce the chance of losing data due to abnormal termination by explicitly calling ncsync (NCSNC)
after every write to netCDF variables or change to attribute values. This can be expensive in
computer resources, so such calls should ordinarily be omitted unless they are really needed.

Use of the netCDF Library 29

4. Use of the netCDF Library

It is not necessary to know about all the netCDF modules to make use of the netCDF library.
If you are creating a netCDF file, only a handful of routines are required to define the necessary
dimensions, variables, and attributes, and to write the data to the netCDF file. Similarly, if you
are writing software to access data stored in a particular netCDF object, only a small subset of the
netCDF library is required to open the netCDF file and access the data. Only authors of generic
applications that access arbitrary netCDF files and write out transformed netCDF files need to be
familiar with the whole netCDF library. In this chapter we provide templates of common sequences
of netCDF subroutine calls needed for the typical uses. Full argument lists for the procedures and

subroutines are described in later chapters.

4.1 Creating a netCDF File

The typical sequences of C netCDF calls used to create a new netCDF file is as follows, where
for clarity we only present the name of the routines, omit all declarations, parameters and error
checking, and use ... to represent arbitrary sequences of other statements:

nccreate /* create netCDF file: enter define mode */
ncdimdef /* dimension definitions: from name and size */

ncvardef /#* variable definitions: from name, type, dimensions */

ncattput /* attribute put: assign attribute values */

ncendéé /* end definitions: leave define mode */
ncvarbﬁt /* variable put: provide values for variables */
ncéétput /* attribute put: change attribute values */
ncéiose /* close: save new netCDF file */

In FORTRAN, the corresponding sequence looks like this:

CALL NCCRE ! create netCDF file: enter define mode
CALL NCDDEF ! define dimensions: from name and size

CALL NCVDEF ! define variables: from name, type, dimensions

28

netCDF User’s Guide

Data 27

netCDF library won’t provide much help or hindrance with constructing such data structures, but
it is possible to use attributes to name associated index variables. For example, a variable attribute
such as ‘array_index_var = "v_index'’ attached to one variable may provide the name of another
associated variable to be used as an index for fast retrieval by value.

26 netCDF User’s Guide

¢ FORTRAN
z[0] [1] [0] [0] z(1, 1, 2, 1)
z[0] [1]1[0] [1] z(2, 1, 2, 1)
z[0] [1] [0] [2] z(3, 1, 2, 1)
z[0] [1]1[0] [3] z(4, 1, 2, 1)
z[2] [1]1[4][7] z(8, 5, 2, 3)
z[2] [1]1[4][8] z(9, 5, 2, 3)
z[2] [1][4][9] z(10, 5, 2, 3)

Note that the different dimension orders for the C and FORTRAN interfaces do not reflect a
different order for values stored on the disk, but merely different orders supported by the procedural
interfaces to the two languages. In general, it does not matter whether a netCDF file is written
using the C or FORTRAN interface; netCDF files written from either language may be read by
programs written in the other language.

To perform conventional record-oriented access, you specify a netCDF file, a record variable (one
defined with an unlimited dimension), and use the record number as the value of the first dimension
(last dimension in FORTRAN), using hyperslab access to get the record of values. When efficiency
is a concern, you should keep in mind the order in which netCDF data is written on the disk, since
the best I/O performance is achieved by reading or writing contiguous data. All variable data is
ordered with the last dimension for each variable varying fastest in the C interface, or the slowest
in the FORTRAN interface. This means that for record variables in particular, at least one disk
access per record will be required for reading a value from each record. Hence reading a hyperslab
that takes one value out of each record will require as many disk accesses as the number of values
requested. For writing, the situation is even worse, since each record must first be read and then
rewritten to change a single value within a record. If you have a choice about the order in which
data is accessed or the order of the dimensions that define the shape of a variable, try to choose
these two orders in harmony to avoid needless inefficiency.

3.3 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection
of multidimensional variables with attached vector attributes. The netCDF is not particularly
well-suited for storing linked lists, trees, sparse matrices, or other kinds of data structures requiring
pointers. The underlying XDR library on which netCDF is implemented is quite suitable for storing
and retrieving arbitrary data structures in a network-transparent way, but such structures will no
longer be self-describing unless you encode information about the structure with the data. It is
possible to build other kinds of data structures from sets of multidimensional arrays by adopting

various conventions regarding the use of data in one array as pointers into another array. The

Data 25

In C, this corresponds to

#define LATS ©&

#define LONS 10

#define LEVELS 4

#define TIMES 3 /* currently */

float z[TIMES*LEVELS*LATS*LONS] ;

to keep the data in a one-dimensional array, or

float z[TIMES][LEVELS][LATS][LONS];

using a multidimensional array declaration.

In FORTRAN, the dimensions are reversed from the CDL declaration with the first dimension

varying fastest and the record dimension as the last dimension of a record variable, as in

PARAMETER (LATS=5, LONS=10, LEVELS=4, TIMES=3)

REAL Z(LONS, LATS, LEVELS, TIMES)

Then the corner should be (0, 1,0, 0) in C—or (1, 1, 2, 1) in FORTRAN-—because you want to
start at the beginning of each of the time, lon, and lat dimensions, but you want to begin at the
second value of the level dimension. The edge lengths should be (3, 1, 5, 10) in C—or (10, 5, 1,
3) in FORTRAN-—since you want to get data for all three time values, only one level value, all
five lat values, and all 10 lon values. You should expect to get a total of 150 float values returned
(3*1%*5*10), and should provide enough space in your array for this many. The order in which
the data will be returned is with the last dimension, lon, varying fastest for C, or with the first
dimension, LON, varying fastest for FORTRAN:

24 netCDF User’s Guide

affecting existing netCDF files or applications, and with only minor changes required for generic

applications that will support them.

3.2 Data Access

The netCDVF interface supports direct (random) access to single data values, direct access to
an arbitrary hyperslab of data for a single variable, and record-oriented access to data for a single
variable (as a special case of hyperslab access) in an open netCDV file.

To directly access a single data value, you specify a netCDF file, a variable, and a multidi-
mensional index for the variable. Files are not specified by name every time you want to access
data, but instead by a small integer obtained when the file was first created or opened. Similarly,
variables are not specified by name for every data access either, but by variable 1Ds, small integers
used to identify variables in a netCDF file.

Data in a netCDF file can be accessed as single values or as hyperslabs. A hyperslab is a kind
of generalized piece of a multidimensional variable that is specified by giving the indices of a corner
point and a list of edge lengths along each of the dimensions of the variable. The corner point
specified must be the one with the smallest indices, that is the one closest to the origin of the
variable index space. The block of data values returned (or written) has the last dimension of
the variable varying fastest, and the first dimension varying most slowly in the C interface. For
FORTRAN, the order is reversed, with the first dimension of the variable varying fastest and the
last dimension varying most slowly. These ordering conventions correspond to the customary order
in which multidimensional variables are stored in C and FORTRAN.

As an example of hyperslab access, assume that in the first example netCDF you wish to read
all the data for the z variable at the second (500-mb) level, and assume that there are currently

three records (time values) in the netCDF file. Recall that the dimensions are defined as:

lat = 5, lon = 10, level = 4, time = unlimited;

and the variable z is declared as

float z(time, level, lat, lon);

in the CDL notation.

Data 23

3. Data

This chapter discusses the six primitive netCDF data types, the kinds of data access supported
by the netCDF interface, and how data structures other than multidimensional arrays may be
implemented in a netCDVF file.

3.1 netCDF Data Types

The current set of primitive types supported by the netCDF interface are

byte used for eight-bit data, especially good for saving space when only a few values are
possible or resolution is low.

character

currently synonymous with byte, intended for representing text strings as arrays of

ASCII characters.

short 16-bit integers.
long 32-bit integers.
float 32-bit IEEE floating-point.

double 64-bit ILEE floating-point.

Except for the added data-type byte and the lack of unsigned, netCDF supports the same
primitive data types as C. The names for the primitive data types are reserved words in CDL, so
the names of variables, dimensions, and attributes must not be type names. Whether byte, short,
or long data is interpreted as signed or unsigned is not part of the netCDF interface; since no
netCDF operations depend on the sign or order of variable data, you are free to interpret a byte,
for example, as holding values between 0 and 255 or between -128 and 127. For convenience, short

and long constants are interpreted as signed in the CDL notation.

These types were chosen because they are familiar to C and FORTRAN programmers, they
have well-defined external representations independent of any particular computers (using XDR),
and they are sufficient for providing a reasonably wide range of trade-offs between data precision

and number of bits required for each datum.

Additional primitive types may be added in the future, but only in a way that is compatible
with existing programs and files. For example, hyperlong for 64-bit integers will eventually be
needed, along with a new type for multibyte characters, but these can both be added without

22

netCDF User’s Guide

Components of a netCDF File 21

Note that more attributes may be added to a netCDF file long after it is first defined, so you

don’t have to anticipate all potentially useful attributes.

2.3.2 Differences between Attributes and Variables

In contrast to variables, which are intended for data, attributes are intended for metadata.
Typically the data in variables of an open netCDF will reside on disk, because the data are too
large to fit in memory all at once. In contrast, the total amount of metadata associated with a
netCDF object and stored in its attributes is typically small enough to be memory-resident.

Another difference between attributes and variables is that variables may be multidimensional.
Attributes are all either scalars (single-valued) or vectors (a single, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a
variable may exist with no values. The value of an attribute must be specified when it is created,

so no attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned to
variables may have the same units as the variable (for example, valid_range) or have no units (for
example, scale_factor). If you want to store data in a netCDF that requires units different from
those of the associated variable, it is better to use a variable than an attribute. More generally,
if data require ancillary data to describe them, are multidimensional, require any of the defined
netCDF dimensions to index their values, or require a significant amount of storage, the data should

be represented using variables rather than attributes.

20

valid_min
valid_max

netCDF User’s Guide

variable. The type of each valid_range attribute should match the type of its variable.

One or both of these may be used instead of valid_range; this handles the case where
it only makes sense to bound the data below or above.

scale_factor

add_offset

If present for a variable, the data are to be multiplied by this factor after the data is
read by the application that accesses the data.

If present for a variable, this number is to be added to the data after it is read by
the application that accesses the data. If both scale_factor and add_offset at-
tributes are present, the data are first scaled before the offset is added. The attributes
scale_factor and add_offset can be used together to provide simple data compres-
sion for low-resolution data to be stored as small integers in a netCDF file. When
scaled data is written, the application should first subtract the offset and then divide
by the scale factor.

missing_value

C_format

If present for a variable, this value is considered to be a special value that indicates
missing data. Hence an application that is displaying the data should ignore all data
points with this value. The missing value should be outside the range specified by
valid_range for a variable. It is not necessary to define your own missing_value
attribute for a variable if the default fill value for the type of the variable is adequate.
See section 7.9 [Missing Values], page 91. If you define your own missing_value
attribute for a floating point type, use an integer less than 1000000 in absolute value
to avoid machine precision problems.

A character array for the format that should be used to print values for this variable

by C applications.

FORTRAN_format

title

history

A character array for the format that should be used to print values for this variable
by FORTRAN applications.

A global attribute that is a character array providing a succinct description of what is
in the data set.

A global attribute that is a character array with a line for each invocation of a program
and arguments that were used to derive the file. Well-behaved generic netCDVF filters
(programs that take netCDVF files as input and produce netCDF files as output) will
automatically append their name and the parameters with which they were invoked to
the global history attribute of an input netCDF file.

Components of a netCDF File 19

written.

The CDL notation for defining an attribute is

variable_name:attribute_name = list_of_values ;

for a variable attribute, or

:attribute_name = list_of_values ;

for a global attribute. The type and length of each attribute are not explicitly declared in CDL;
they are derived from the values assigned to the attribute. All values of an attribute must be of the

same type. The notation used for constant values of the various netCDF types is discussed later.

In the example netCDF, units is an attribute for the variable 1at that has a length 13-character
array value ‘degrees north’. valid_range is an attribute for the variable t that has length 2 and
values ‘=100.0" and ‘100.0’.

Two global attributes—source and base_time—are defined for the example netCDF. Both are
character arrays intended for documenting the data. Real netCDF files typically have more global
attributes to document the origin, history, accuracy, and other characteristics of the data.

2.3.1 Attribute Conventions

Generic applications that take netCDF files as input will, by convention, expect certain variable
and global attributes. If you want to be able to use these generic applications with your files, you
should use the following conventional names for these commonly used attributes:

units A character array giving the units used for the variable’s data. A standard for con-
ventional ways to name units in each specific discipline should be used, if available.
Unidata is compiling a suggested standard for data in the atmospheric sciences.

long_name
A long descriptive name for labelling plots, for example. If a variable has no long_name

attribute assigned, the variable name will be used as a default.

valid_range
An array of two numbers specifying the minimum and maximum valid values for this

18 netCDF User’s Guide

2.3 Attributes

A netCDF attribute is meant to contain information about a netCDF variable or about an entire
netCDF file. This information is metadata, or data about data, analogous to the information stored
in data dictionaries and schema in conventional database systems. An attribute has an associated
variable, a name, a data type, alength, and a value. Individual attributes are identified by specifying

a variable and an attribute name.

Each attribute is associated with a single variable when it is created. Attributes for different
variables may differ in data type, length, and values even though they share the same name.

A global attribute is one that applies to the whole netCDF rather than any particular variable.
Global attributes are defined and accessed similarly to variable attributes; the details for defining
global attributes in the CDL notation and in the netCDF procedural interface are presented later.

Attribute names follow the same rules as dimension and variable names. Providing meaningful
names for attributes is important, but using agreed on conventional names is also required if generic
applications and utility programs will be used on a netCDF file. For example, every variable for
which units make sense should have a units attribute defined, so the units can be printed in labels.
Furthermore, if the netCDF file is ever to be used as input to a generic units-converter program,
the values of the units attributes should be expressed in a conventional form as a character string

that can be interpreted by that program.

The type of an attribute is specified when it is created. The types permitted for attributes are
exactly the same as the netCDF data types used in creating variables. Attributes with the same
name for different variables should sometimes be of different types. For example, the attribute
valid_max specifying the maximum valid data value for a variable of type long should be of type
long, whereas the attribute valid_max for a variable of type double should instead be of type
double.

In addition to specifying the associated variable, attribute name, and type, the length and
value of an attribute must also be specified when it is created. The information in an attribute is
represented by either a single value (length 1) or a vector of values of the same type. Since “character
string” is not a basic netCDF data type, string-valued attributes have a vector of characters as

their value, with a length equal to the length of the character string.

Attributes are more dynamic than variables or dimensions; they can have their type, length,
and values changed after they are created. For example, an attribute max_value might store the

maximum value seen so far for a record variable, and might be updated every time a new record is

Components of a netCDF File 17

Like a dimension name, a variable name is an arbitrary sequence of alphanumeric characters
(including _) beginning with a letter. Case is distinguished in variable names. Long names help to
make a netCDF file self-documenting, but ancillary information about a variable is better stored
in variable attributes (discussed below) than encoded as part of the name.

A variable data type is one of a small set of netCDF types that have the names NC_BYTE,
NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE in the C interface and the corresponding
names NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE in the FORTRAN interface. In
the CDL notation, these types are given the simpler names byte, char, short, long, float, and
double. int may be used as a synonym for long and real may be used as a synonym for float
in the CDL notation. We will postpone a discussion of the exact meaning of each of the types
until the discussion of data, below. For now, it suffices to know that the choice of the type used to
represent variable data depends on the range of values it can have, the precision to which values

are known, and the number of bits required to represent the variable in a netCDF file on disk.

The shape of a variable is specified by its list of dimensions. If a variable has an unlimited
dimension, that dimension must appear first in the list of dimensions in CDL. It is possible to
define variables with no dimensions, also called scalar variables. There are no scalar variables in
the example netCDF file.

CDL variable declarations appear after the variables keyword in a CDL unit. They have the
form

type variable_name (dim_name_1, dim_name_2, ...) ;

for variables with dimensions, or

type variable_name ;

for scalar variables.

In the CDL example there are eight variables. As discussed above, four of these are coordinate
variables for dimensions. The remaining variables, z, t, p, and rh are meant to contain the “real”
data in this netCDF object. Each of these variables has the unlimited dimension time as its first
dimension, so they are called record variables. A variable that is not a record variable has a fixed
size (number of data values) given by the product of its dimensions. A record variable has a current
size, given by the product of the maximum record written so far and the other dimensions of the

variable. Only record variables may grow after they are defined.

16 netCDF User’s Guide

points. In the example netCDF file, variables z, t, and p have exactly the same dimensions, so
they refer to different variables defined at the same points on a four-dimensional space-time grid.
The variable rh does not have level as a dimension, perhaps because it is only defined for a single

level.

2.1.3 Using Dimensions to Define Coordinate Systems

Besides serving as sizes for integer indexes to multidimensional variables, dimensions may be
used to define coordinate systems for variable data. To do this, create a variable with the same
name as a dimension and specify coordinate values for that variable. A variable should only be
given the same name as a dimension in a netCDF if it is intended to be used as a coordinate
variable. Such variables are indexed by the dimension for which they provide coordinate values,

for example, lat(lat).

It is not necessary to provide a coordinate variable for each dimension; if no such variable is
defined, the coordinate values of the dimension are assumed to be 0, 1, 2, ... (for C programs) or
1,2,3, ... (for FORTRAN programs). Although the C and FORTRAN interfaces support different
conventions for index numbering, there is no difference between the actual netCDF files written
by C and FORTRAN programs. Programs written in either language can be used to access data

written by programs using the other interface.

In the CDL example, each dimension has an associated coordinate variable with the same name
as the dimension. The four values of the level index, 0, 1, 2, 3, (1, 2, 3, 4 in FORTRAN) are
related in coordinate-like fashion to the four values (100, 500, 750, 1000) of the level variable.
Note that there is no requirement that coordinates be equally spaced or increasing. It would not
make much sense for two coordinate values to be the same, but the meaning of coordinate variables
is enforced only by conventions of application packages and utilities, not by the netCDF interface.

2.2 Variables

A variable represents a multidimensional array of values of the same type. A variable has a
name, a data type, and a shape described by its list of dimensions, all of which are specified when
the variable is created. Each variable may also have data values and associated attributes, which
may be added or changed after the variable is created. Variables are used to store the bulk of the

data in a netCDF file, and are the primary component used by utilities to identify sub-parts of a

netCDF file.

Components of a netCDF File 15

CDL dimension declarations may appear on one or more lines following the CDL keyword
dimensions. Multiple dimension declarations on the same line may be separated by commas.
Each declaration is of the form name = size.

There are four dimensions in the example: lat, lon, level, and time. The first three are
assigned fixed sizes; time is assigned the size UNLIMITED, which means it is the unlimited dimension.
A netCDF file can have at most one unlimited dimension, but need not have any.

There are several uses for netCDF dimensions:

e specifying the shapes and sizes of variables,
e identifying and relating variables that are defined on a common grid, and

e providing a way to define coordinate systems.

We discuss each of these uses below.

2.1.1 Using Dimensions to Specify Variable Shapes

The basic unit of named data in a netCDF is a variable. In general, a variable is a multidi-
mensional object that has, among other characteristics, a shape, which is defined by the number,
order, and sizes of its dimensions. When a netCDF variable is defined, the number and order of the
dimensions that define its shape are specified. Hence you must first create the necessary dimensions
before creating a netCDF variable that uses them.

It is possible to use the same dimension more than once in specifying a variable shape, for
example var(dim, dim), but it does not make much sense to do this; it is contrary to the intuitive
meaning of a physical dimension. A variable that has two dimensions that happen to be the same

size is more accurately modeled by using two dimensions with different names but the same size.

2.1.2 Using Dimensions to Relate Variables

Two dimensions may have the same size, perhaps by coincidence, without being related in any
other way. Dimension names provide a way to distinguish dimensions regardless of size.

Variables are related by the dimensions they share. For example, if two variables are defined

with the same dimensions, they might represent observations or model output for the same set of

14 netCDF User’s Guide

The CDL notation for a netCDF file can be generated automatically by using ncdump, a utility
program described later. Another netCDF utility, ncgen, generates a netCDF file (or optionally C
or FORTRAN source code containing calls needed to produce a netCDF file) from CDL input. It
is not necessary to learn much about CDL notation to use the netCDF library; we use it in this
document as a concise way of presenting netCDF examples.

The CDL notation will be explained more fully as we describe the components of a netCDF file.
For now, note that all CDL statements are terminated by a semicolon. Spaces, tabs, and newlines
can be used freely for readability. Comments in CDL follow the characters // on any line. A CDL
description of a netCDF file takes the form

netCDF name {
dimensions: ...
variables: ...
data: ...

}

where the name is used only as a default in constructing the name of the file generated by the
ncgen utility. The CDIL description consists of three optional parts, introduced by the keywords
dimensions, variables, and data. netCDF dimension declarations appear after the dimensions
keyword, netCDF variables and attributes are defined after the variables keyword, and variable
data assignments appear after the data keyword.

2.1 Dimensions

A netCDF dimension is a named integer used to specify the shape of one or more of the mul-
tidimensional variables contained in a netCDF file. A dimension may be used to represent a real
physical dimension, for example, time, latitude, longitude, or height. A dimension might also be
used to index more abstract quantities, for example, color-table entry number, instrument number,
station-time pair, or model-run ID.

Every netCDF dimension has both a name and a size. A dimension name is an arbitrary sequence
of alphanumeric characters (including the underscore character, _) beginning with a letter. Case
is distinguished in netCDF names. A dimension size is an arbitrary positive integer, except that
one dimension in a netCDF file can have the size UNLIMITED. Such a dimension is called the
unlimited dimension or the record dimension. A variable with an unlimited dimension can grow to
any length along that dimension. The unlimited dimension is like a record number in conventional
record-oriented files.

Components of a netCDF File 13

2. Components of a netCDF File

A netCDF file has dimensions, variables, and attributes. These components can be used together
to capture the meaning of data and relations among data fields in a scientific data set.

We will use a small netCDF example to illustrate the concepts of netCDF dimensions, variables,
and attributes. The notation used to describe this simple netCDF object is called CDL (network
Common Data form Language). It provides an easily comprehended text version of the structure
and contents of a binary netCDF file:

netcdf example_1 { // example of CDL notation for a netCDF file

dimensions: // all the dimensions are declared first
lat = 5, lon = 10, level = 4, time = unlimited;

variables: // variable types, names, and shapes
float z(time,level,lat,lon);
double p(time,level,lat,lon), t(time,level,lat,lon);
double rh(time,lat,lon);
int lat(lat), lon(lon), level(level);
short time(time);
// variable attributes

lat:units = '"degrees north";
lon:units = '"degrees east';
t:long_name = '"temperature';
t:units = '"degrees Celsius";
t:valid_range = -100.0, 100.0; // min and max
rh:long_name = 'relative humidity";
time:units = "hours from base_time";
// global attributes

:source = "NWS";
:base_time = "88/10/25 12:00:00";

data: // optional data assignments
level = 100, 500, 750, 1000;
lat = 20, 30, 40, 50, 60;

lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;

time =0, 12;

rh =0, 0, O, 0, O, O, O, 0, O, O,
A,.1,.1,010,01,.1,.1,.1,.1,.1,
.2,.2,.2,.2,.2,.2,.2,.2,.2,.2,
.3,.3,.3,.3,.3,.3,.3,.3,.3,.3,
.4,.4,.4,.4,.4, .4, .4, .4, .4, .4;

s .

-
-
-
-
-
-
-
-

12

netCDF User’s Guide

Rew, R. K. and G. P. Davis, “The Unidata netCDF': Software for Scientific Data Access,” Sixth
International Conference on Interactive Information and Processing Systems for Meteorology,

Oceanography, and Hydrology, Anaheim, California, American Meteorology Society, February
1990.

Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Access,” Computer
Graphics and Applications, IEEE, July 1990.

Treinish, L. A. and M. L. Gough, “A Software Package for the Data Independent Management
of Multi-Dimensional Data,” EOS Transactions, American (Geophysical Union, 68, 633-635,
1987.

Sun Microsystems, “External Data Representation Standard: Protocol Specification,” RFC
1014; Information Sciences Institute, May 1988.

Introduction 11

workshop after some further simplifications were discovered. A document incorporating the results
of the workshop into a proposed Unidata netCDF interface specification was distributed widely for
comments before implementing the software it described. Comparison with alternatives and recent
experience in using netCDF are discussed in a conference preprint volume (Rew and Davis, 1990).

1.6 Future Plans for netCDF

We will continue building on the existing netCDF access library for Unidata system software
and applications. We intend to use netCDF interfaces for earth-referenced image-analysis software,

as well as for the output of decoders for a wide variety of meteorological and oceanographic data.

A collection of netCDF operators will be made available that provide an algebra of useful op-
erations on generic scientific data stored in netCDF files. These include selectors that will extract
subsets of variables or reduce the dimensionality of a netCDF file; constructors that will merge
netCDF files, combine variables, or increase dimensionality; graphics generators that read netCDF
files and produce graphical output; mathematical operators; and specialized data converters to
convert units, convert to or from standard archive forms, or to convert to a canonical form for com-
parison. By composing these fundamental operators, users will have a wide variety of capabilities.

We plan to extend the netCDF library in an upward-compatible way to support netCDF servers
on a network. Applications programs, as clients of the netCDF servers, will be able to access
cross-sections of data efficiently, as if it were stored in a local file. A netCDF server will have the
ability to support virtual netCDF objects that provide different views of large or remote datasets.
Other servers may also be capable of transparently providing a netCDF interface to non-netCDF
archives.

References

1. Fahle, J., TeraScan Applications Programming Interface, SeaSpace, San Diego, California,
1989.

2. Fulker, D. W., “The netCDF: Self-Describing, Portable Files—a Basis for ‘Plug-Compatible’
Software Modules Connectable by Networks,” ICSU Workshop on Geophysical Informatics,
Moscow, USSR, August 1988.

3. Gough, M. L., NSSDC CDF Implementer’s Guide (DEC VAX/VMS) Version 1.1, National
Space Science Data Center, 83-17, NASA /Goddard Space Flight Center, 1988.

4. Raymond, D. J., “A C Language-Based Modular System for Analyzing and Displaying Gridded
Numerical Data,” Journal of Atmospheric and Oceanic Technology, 5, 501-511, 1988.

10 netCDF User’s Guide

The NASA CDF package has been used for many different kinds of data in an extensive collection
of applications. It has the virtues of simplicity (only 13 subroutines), independence from storage
format, generality, ability to support logical user views of data, and support for generic applications.

Unidata held a workshop on CDF in Boulder in August 1987. Its purposes were to explore the
possibility of collaborating with NASA to extend the CDF to work with FORTRAN compilers not
employing VMS extensions; to define a C interface; and to permit the access of data aggregates
with a single call, while maintaining compatibility with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had de-
veloped a package of C software for UNIX that supported self-describing scientific data along with a
“pipes and filters” approach to processing, analyzing, and displaying scientific data. Coincidentally,
this package also used the common data format name, which was later changed to C-Based Anal-
ysis and Display System (CANDIS). Unidata learned of Raymond’s work, described in (Raymond,
1988), and incorporated some of his ideas, such as the use of named dimensions and variables with
differing shapes in a single data object, into the Unidata netCDF'.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that was
layered on a nonproprietary external data representation standard (XDR) developed by Sun Mi-
crosystems. This prototype proved that a single-file, network-transparent implementation of the
CDF interface could be achieved at acceptable cost and that the resulting programs could be imple-
mented on both UNIX and VMS systems. However, it also demonstrated that providing a small,
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was not

practical.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firm in San
Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a
CDF package in C that extended the NASA CDF in several important ways (Fahle, 1989). Like
Raymond’s package, the SeaSpace CDF permitted variables with unrelated shapes to be included
in the same data object and permitted a general “hyperslab” form of access to multidimensional
arrays. Fahle’s implementation was used at SeaSpace as the intermediate form of storage for a
variety of steps in their image-processing system.

After studying Fahle’s interface, we concluded that it solved many of the problems we had
identified in trying to stretch the NASA interface to our purposes. In August 1988, we convened
a small workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues.
Attending were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDVF),
Angel Li of the University of Miami (who had implemented our prototype netCDF on VMS and
was a potential user), and Unidata systems development staff. Consensus was reached at the

Introduction 9

netCDF interface to access data in inefficient ways: for example, if the user makes a request for a
slice of variable data that requires a single value out of each record. This manual discusses charac-
teristics of the netCDF implementation at those points where it is important to know something
about how the underlying software works to use the interface effectively.

1.4 Is netCDF a Good Archive Format?

The netCDF can be used as an archive format for storing data, but it will generally take more
space than a special-purpose archive format that exploits knowledge of particular characteristics of
a set of data. While compression is possible for low-resolution data by using, for example, eight-bit
bytes instead of 32-bit floating-point numbers, the netCDF was not designed to achieve optimal
compression of scientific data.

The advantages of a special-purpose archive format for small archives should be compared to
the benefits of machine-independence and the ability to store metadata (data about the data) that
the netCDF interface provides. For large archives, only two programs need to be provided for each
archive format, one to translate archived data into netCDF form and the other to translate back to
the archive format. Tools provided for manipulating netCDF data will then be available without
sacrificing the advantages of the archive format and without requiring the wholesale conversion of
large existing archives.

1.5 Background and Evolution of the netCDF Interface

The development of the netCDF began with a modest goal related to Unidata’s needs: to provide
a common interface between Unidata applications and ingested real-time meteorological data. Since
Unidata software was intended to run on both Suns and MicroVAXs, with access from both C and
FORTRAN software, achieving Unidata’s goals had the potential for providing a package that was
useful in a broader context. By making the package widely available and collaborating with other
organizations with similar needs, we hoped to improve the current situation in which scientific
software is only rarely reused by others in the same discipline and almost never reused between
disciplines (Fulker, 1988).

Important concepts employed in the netCDF originated in a paper (Treinish and Gough, 1987)
that described software developed at the NASA Goddard National Space Science Data Center
(NSSDC). The interface provided by this software was called the Common Data Format (CDF).
The NASA CDF was developed as a FORTRAN library for VAX/VMS systems to support an

abstraction for storing multidimensional scientific data.

8 netCDF User’s Guide

climate observations covering decades, high-resolution atmospheric profile data, and other large

data sets are beyond the capabilities of most DBMSs to organize and index for efficient retrieval.

Another problem is that DBMSs provide many facilities that are not needed in the analysis,
management, and display of scientific data. Elaborate update facilities, concurrency control, audit
trails, report writers, and other mechanisms designed for transaction-processing are unnecessary for
the applications served by the netCDF interface. The resources and expense required to support
these unnecessary facilities cannot be justified for scientific applications.

Other requirements that are difficult to satisfy with existing database systems include support
for both C and FORTRAN procedural interfaces, ability to run on both UNIX and VMS systems,
and support for an architecture-independent format for representing scientific data.

1.3 What about Performance?

To achieve network-transparency, the netCDF is implemented on top of a layer of software for
external data representation (XDR). XDR, developed by Sun Microsystems, Inc., is a nonpropri-
etary standard for describing and encoding data. It supports encoding arbitrary C data structures
into machine-independent sequences of bits. The encoding used for floating-point numbers is the
Institute for Electrical and Electronics Engineers (IEEE) standard for normalized floating-point
numbers. XDR has been implemented on a wide variety of computers, including SUNs, VAXs,
Apple Macintoshes, IBM-PCs, IBM mainframes, and CRAYs. It assumes only that 8-bit bytes can
be encoded and decoded in a consistent way.

Translating data into and out of XDR form adds overhead to data transfers, but for many
applications the extra CPU cycles used to convert data to and from a machine-independent repre-
sentation are not significant. We are currently considering whether a native mode that does not use
XDR would be a useful addition to the netCDF implementation. The amount of XDR overhead
depends on many factors, including the data type, the type of computer, the granularity of data
access, and how well the implementation has been tuned to the computer on which it is run. For
many applications, we consider the overhead of the XDR layer to be a reasonable price to pay for

portable, network-transparent data access.

Often when an abstraction layer is added to hide the details of an underlying implementa-
tion from applications, it becomes possible to express simply computations that may require large
amounts of computing resources. Furthermore, it may not be obvious which of several ways of
expressing a computation through the new interface will make efficient use of computing resources,
without understanding something about the implementation. It is certainly possible to use the

Introduction 7

1. Introduction

1.1 The netCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access pro-
grams for storing and retrieving scientific data. The netCDF is an abstraction that supports a view
of data as a collection of self-describing, network-transparent objects that can be accessed through
a simple interface. Collections of named multidimensional variables can be randomly accessed,
without knowing details of how the data are stored. Auxiliary information about the data, such as
what units are used, can be stored with the data. Generic utilities and application programs can
be written that access arbitrary netCDVF files and transform, combine, analyze, or display specified
fields of the data. The development of such applications may lead to improved accessibility of data

and improved reusability of software for scientific data management, analysis, and display.

The netCDF software that implements this interface is being made freely available to encourage
its wide use. The netCDF interface is supported for both C and FORTRAN, and can be used with
UNIX, VMS, MSDOS, and MacOS operating systems. Porting the software to other operating
systems should not be difficult.

The netCDF software implements an abstract data type, which means that all operations to
access and manipulate data in a netCDF file must use only the set of functions provided by the
interface. The actual representation of the data is hidden from applications that use the interface,
so that how the data are stored could be changed without affecting such programs. The physical
representation of netCDF data is designed to be independent of the computer on which the data were
written. Future changes to the netCDF interface will be compatible with the interface described
here, so that neither existing netCDF files nor programs accessing them will require modification.

1.2 The netCDF is Not a Database Management System

Why not use an existing database management system (DBMS) for storing scientific data?
We have looked at available database packages, both commercial and research-oriented, and have
concluded that they are currently inadequate for achieving the goals of the netCDF.

First, most existing DBMSs have poor support for multidimensional objects as the basic unit of
data access. Related to this is a second problem with general-purpose database systems: their poor
performance on large scientific data sets. Collections of satellite images, scientific model outputs,

netCDF User’s Guide

Summary 5

Summary

The purpose of the Network Common Data Form (netCDF') interface is to allow you to cre-
ate, access, and share scientific data in a form that is self-describing and network-transparent.
“Self-describing” means that a file includes information defining the data it contains. “Network-
transparent” means that a file is represented in a form that can be accessed by computers with
different ways of storing integers, characters, and floating-point numbers. Using the netCDF in-
terface for creating new scientific data sets can improve the accessibility of the data. Using the
netCDF interface in new software for scientific data access, management, analysis, and display can
improve the reusability of the software for other data sets and by other users.

The netCDF software provides common C and FORTRAN interfaces for applications and data.
The C interface library is available for many common computing platforms, including UNIX, VMS,
MSDOS, and MacOS environments. The FORTRAN interface is currently available for a smaller
set of environments (due to the lack of a standard for calling C from FORTRAN).

The netCDF software is being made freely available to encourage the sharing of both scientific

data and the software that makes the data useful.

4 netCDF User’s Guide

The Network Common Data Form (netCDF') software package described in this manual was
developed initially as part of the SDM system and is distributed with it. In essence, the netCDF
is the “standard” data-access interface employed by the various SDM software components. The
netCDF software, however, may be useful in a wider context. In recognition of this, Unidata
provides the software and its documentation separately.

David Fulker, Director

Unidata Program Center

Foreword 3

Foreword

Unidata is a national effort, sponsored by the Division of Atmospheric Sciences of the National
Science Foundation (NSF'), to help universities use computing and communication technologies to
access, analyze, and display atmospheric and related data. The program, which is managed by the
University Corporation for Atmospheric Research, was begun in 1982 in response to (1) university
interests in wider application of interactive processing and display methods to atmospheric science
research and education and (2) university concerns about the future availability of and costs for
National Weather Service (NWS) data (the distribution modes were being altered by the Automa-
tion of Field Operations and Services [AFOS] program). Unidata now provides universities with
inexpensive access to near-real-time weather data accompanied with capabilities to select, organize,
analyze, and display those data interactively.

The Unidata system represents the results of a partnership between the universities and the
Unidata Program Center in Boulder, Colorado. The goal of the program office is to provide a system
to the universities, with the capabilities described above, based upon modern communications
technology and personal workstations. Universities participate in establishing Unidata policies,
specifying broadcast services, developing software, and they provide technical assistance to one
another. The program center’s role is to coordinate community efforts nationwide, to provide
software, and to help universities select and use networked computing systems.

Most Unidata sites are connected to NSFnet, NSF’s scientific research network. Such connec-
tions provide convenient access to the Program Center for obtaining current copies of software,
documentation, announcements, and software updates as well as for reporting problems and re-

questing assistance.

Unidata distributes a number of software packages. One is an image display and data-handling
system developed by the Space Science and FEngineering Center (SSEC) of the University of
Wisconsin-Madison. This software, called PC-McIDAS (for Man—Computer Interactive Data Ac-
cess System) runs on IBM PS/2 computers using the OS/2 operating system.

In addition, Unidata is distributing a composite package of data handling, analysis and display
software for VMS- and UNIX-based systems, which includes community contributions from several
sources. Unidata’s goal is to standardize the user interface, the data-access interface, and the
display interface, and to adapt existing applications software to match these three. Beyond the
suite of capabilities thus provided, the approach maximizes the programmability of the system:
users may add new applications at will so long as the interface standards are observed. This
composite package is known as Unidata’s Scientific Data Management (SDM) system.

netCDF User’s Guide

Acknowledgments 1

Acknowledgments

For helping to make this first release of the Unidata netCDF software possible, we would like to
acknowledge the efforts of

e Joe Fahle, SeaSpace, Inc.

e Michael Gough, Apple Computer

e Angel Li, University of Miami

e Dave Raymond, New Mexico Institute of Mining and Technology
e Lloyd Treinish, NASA/NSSDC

Copyright © 1988, 1989, 1990 by UCAR

University Corporation for Atmospheric Research

All Rights Reserved

Permission is granted to make and distribute verbatim copies of this manual provided that the
copyright notice and these paragraphs are preserved on all copies. The software and any accom-
panying written materials are provided “as is” without warranty of any kind. UCAR expressly
disclaims all warranties of any kind, either expressed or implied, including but not limited to the

implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric Research
and sponsored by the National Science Foundation. Any opinions, findings, conclusions, or recom-
mendations expressed in this publication are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-
ment by the Unidata Program Center. Unidata does not authorize any use of information from

this publication for advertising or publicity purposes.

netCDF User’s Guide

An Interface for Data Access

Version 1.06, June 1990

by Russell K. Rew, Unidata Program Center

